
KALA ESTATE STAGE 01 SUBDIVISIONAL WORKS

FOR SIG GROUP

SHEET LIST TABLE						
	SHEET NUMBER	DESCRIPTION				
	3086-01-001	COVER SHEET				
	3086-01-010	GENERAL NOTES AND PAVEMENT DETAILS				
	3086-01-011	STANDARD DETAILS				
	3086-01-020	TYPICAL CROSS SECTIONS (SHEET 1 OF 2)				
	3086-01-021	TYPICAL CROSS SECTIONS (SHEET 2 OF 2)				
٦	3086-01-100	LAYOUT PLAN (SHEET 1 OF 2)				
· ·	3086-01-101	LAYOUT PLAN (SHEET 2 OF 2)				
	3086-01-102	OUTLET SWALE SETOUT (SHEET 1 OF 4)				
	3086-01-103	OUTLET SWALE SETOUT (SHEET 2 OF 4)				
	3086-01-104	OUTLET SWALE SETOUT (SHEET 3 OF 4)				
	3086-01-105	OUTLET SWALE SETOUT (SHEET 4 OF 4)				
	3086-01-150	EARTHWORKS PLAN				
	3086-01-200	ROAD LONGITUDINAL SECTIONS (SHEET 1 OF 3)				
	3086-01-201	ROAD LONGITUDINAL SECTIONS (SHEET 2 OF 3)				
	3086-01-202	ROAD LONGITUDINAL SECTIONS (SHEET 3 OF 3)				
	3086-01-250	ROAD CROSS SECTIONS (SHEET 1 OF 6)				

SHEET LIST TABLE					
SHEET NUMBER	DESCRIPTION				
3086-01-251	ROAD CROSS SECTIONS (SHEET 2 OF 6)				
3086-01-252	ROAD CROSS SECTIONS (SHEET 3 OF 6)				
3086-01-253	ROAD CROSS SECTIONS (SHEET 4 OF 6)				
3086-01-254	ROAD CROSS SECTIONS (SHEET 5 OF 6)				
3086-01-255	ROAD CROSS SECTIONS (SHEET 6 OF 6)				
3086-01-300	INTERSECTION DETAILS (SHEET 1 OF 4)				
3086-01-301	INTERSECTION DETAILS (SHEET 2 OF 4)				
3086-01-302	INTERSECTION DETAILS (SHEET 3 OF 4)				
3086-01-303	INTERSECTION DETAILS (SHEET 4 OF 4)				
3086-01-350	SIGNAGE AND LINEMARKING PLAN				
3086-01-400	DRAINAGE LONGITUDINAL SECTIONS (SHEET 1 OF 4)				
3086-01-401	DRAINAGE LONGITUDINAL SECTIONS (SHEET 2 OF 4)				
3086-01-402	DRAINAGE LONGITUDINAL SECTIONS (SHEET 3 OF 4)				
3086-01-403	DRAINAGE LONGITUDINAL SECTIONS (SHEET 4 OF 4)				
3086-01-420	DRAINAGE PIT SCHEDULE				

STREET NAME	G	AS	NON-DRINKING WATER		DRINKING WATER		TELCO		ELECTRICITY		SEWER	
	SIDE	OFFSET	SIDE	OFFSET	SIDE	OFFSET	SIDE	OFFSET	SIDE	OFFSET	SIDE	OFFSET
KALAMATA BOULEVARD	-	-	N	2.30	N	2.80	S	2.10	S	2.60	S	1
BRANCH ROAD	_	-	W	2.30	W	2.80	E	2.10	E	2.60	_	_
DELPHI ROAD	_	_	W	2.30	W	2.80	E	2.10	E	2.60	_	_
LESTRA WAY	_	_	W	2.30	W	2.80	E	2.10	Е	2.60	E	1
MT ARARAT SOUTH ROAD	_	_	W	2.30	W	2.80	W	3.80	W	4.30	_	_
OLEA WAY	_	_	E	2.30	Е	2.80	W	2.10	W	2.60	_	_
OLIVE GROVE	_	_	Е	2.30	Е	2.80	W	2.10	W	2.60	_	_
TART STREET	_	_	S	2.30	S	2.80	N	2.10	N	2.60	N	1
TART STREET (LOT 123 & 124)	_	_	Е	2.30	Е	2.80	W	2.10	W	2.60	_	_
TART STREET (LOT 126 & 127)	_	_	S	2.30	S	2.80	N	0.50	N	1.00	_	_

)es							
_165\[В	23.01.25	АТ	Master.	Lon	ISSUED FOR COUNCIL SUBMISSION	
.6-01	Α	13.11.24	NT	MA	K. LORRIMAR	INITIAL ISSUE	
3\3086							
a\FS0							
S\dat							
C:\12dS`	REV	DATE	DRN	CKD	APP	AMENDMENT	

The concepts and information contained in this document are the Copyright of Cossill & Webley Consulting Engineers. Use or copying of the document in whole or part without the written permission of Cossill & Webley Consulting Engineers constitutes an infringement of copyright.

This plan is not to be used for constructio

unless issued as revision 0 or higher

COSSIL&Webley
CONSULTING ENGINEERS

Street Address
Level 20, 390 St Kilda Road W cossillwebley.com.au

Melbourne VIC 3004 T (03) 8548 1560

E Melbourne.Reception@cosweb.com.au

APPROVED PE 0005927

APPROVED PE 0005927

W. SANSOM

SCALE

PROJECT KALA ESTATE - STAGE 01

TITLE COVER SHEET

M MUNICIPALITY CARDINIA SHIRE COUNCIL

PP No. T220227

DRAWING No. 3086-01-001

REVISION B

- 1. ALL LEVELS SHOWN ARE TO AUSTRALIAN HEIGHT DATUM (A.H.D.) AND ALL CO-ORDINATES ARE TO MAP GRID AUSTRALIA (MGA) ZONE 55 .
- 2. THE PLAN OF SUBDIVISION PREPARED BY MNG WILL BE PEGGED BY THE SURVEYOR. FOR SPECIFIC LOT DIMENSIONS
- 3. ALL ROAD AND DRAINAGE WORKS ARE TO BE CARRIED OUT IN ACCORDANCE WITH AS2124-1992, THE ROAD & DRAINAGE SPECIFICATION, STANDARD DRAWINGS AND TO THE SATISFACTION OF COUNCIL.

REFER TO PLAN OF SUBDIVISION NO: <u>PS 908880E</u> LATEST VERSION.

- 4. THE CONTRACTOR IS TO CHECK BENCH MARKS PRIOR TO THE COMMENCEMENT OF WORKS AND IMMEDIATELY REPORT ANY DISCREPANCIES. TBM's TO BE RE-ESTABLISHED BY THE LICENSED SURVEYOR IF FOUND TO BE MISSING AT THE COMMENCEMENT OF CONSTRUCTION. THE CONTRACTOR WILL BE RESPONSIBLE FOR CARE AND MAINTENANCE OF TBM's THEREAFTER.
- 5. FILL AREAS TO BE STRIPPED OF TOPSOIL, FILLED TO WITHIN 100mm OF REQUIRED LEVEL AND TOPSOIL REPLACED TO OBTAIN FINAL FILL LEVELS AS SHOWN ON PLANS. FILLING UNDER LEVEL 1 SUPERVISION TO BE CLEAN CLAY COMPACTED TO A DRY DENSITY NOT LESS THAN 95% OF THE MAXIMUM DRY DENSITY VALUE DETERMINED BY THE STANDARD COMPACTION TEST IN ACCORDANCE WITH AUSTRALIAN STANDARD AS1289.5.1.1–1993. TESTING TO COMPLY WITH AS1289.0-2000.
- 6. EXISTING DAMS ARE TO BE BREACHED, DRAINED, DE-SLUDGED AND SHALL BE EXCAVATED TO A CLEAN FIRM BASE THE SURFACE SHALL BE INSPECTED APPROVED AND LEVELLED BY THE ENGINEER PRIOR TO COMMENCEMENT OF FILLING. FILL IS TO BE PLACED AND COMPACTED AS SPECIFIED AND TO LEVEL 1 SUPERVISION. THE FILL SHALL BE APPROVED SELECTED ON SITE MATERIAL OR APPROVED IMPORTED MATERIAL. THE FILL SHALL BE PLACED UNDER CONTROLLED MOISTURE CONDITIONS OF BETWEEN 85% AND 125% OF OPTIMUM AND APPROPRIATE TO THE TYPE OF COMPACTION EQUIPMENT USED. THE FILL SHALL BE UNIFORMLY COMPACTED IN LAYERS NOT EXCEEDING 300mm DEPTH TO A MINIMUM OF 95% STANDARD DRY DENSITY.
- 7. BEFORE COMMENCING WORK ON TRENCHES IN EXCESS OF 1.5M DEEP, NOTICE OF SUCH PROPOSAL IS TO BE SENT TO THE CHIEF MINING INSPECTOR OCCUPATIONAL HEALTH & SAFETY AUTHORITY IN ACCORDANCE WITH THE WORK SAFE REGULATIONS – "SAFETY PRECAUTIONS IN TRENCHING OPERATIONS" CODE OF PRACTICE No.8 1988. A FOREMAN QUALIFIED AS A MINES MANAGER MUST BE IN ATTENDANCE AT ALL TIMES DURING SUCH EXCAVATIONS.
- 8. THE CONTRACTOR SHALL COMPLY WITH THE OCCUPATIONAL HEALTH AND SAFETY ACT 2004 AND ASSOCIATED CODE OF PRACTICE.
- 9. PRIOR TO WORKS BEING PLACED ON MAINTENANCE ALL AREAS OF THE SUBDIVISION EXPOSED BY DE-VEGETATION INCLUDING NATURE STRIPS, LOTS AND RESERVES ARE TO BE HYDRO-SEEDED UNLESS OTHERWISE SPECIFIED.
- 10. ALL CONCRETE TO BE 32MPa FOR PITS AND 25 MPa IN OTHER APPLICATIONS UNLESS SPECIFIED OTHERWISE. ALL CONCRETE OVER 125mm THICK TO BE VIBRATED USING MECHANICAL VIBRATORS.
- 11. FOR CONCRETE ROAD PAVEMENTS, CONCRETE JOINTING DETAILS ARE TO BE PROVIDED IN ACCORDANCE WITH "CONCRETE PAVEMENT DESIGN FOR RESIDENTIAL STREETS" (1997-CCAA).
- 12. ALL CHAINAGES REFER TO ROAD RESERVE CENTRELINES EXCEPT, IN COURT HEADS, DRAINAGE OUTFALLS AND KERB RETURNS CHAINAGES REFER TO LIP OF KERB.
- 13. THE CONTRACTOR IS REQUIRED TO CONFINE CONSTRUCTION VEHICLES TO THE ROAD RESERVE AND EASEMENTS. ANY DAMAGE CAUSED TO ALLOTMENTS MUST BE MADE GOOD TO A STANDARD ACCEPTABLE BY THE
- 14. ANY BUILDINGS, TROUGHS, FENCES, DEBRIS AND OTHER STRUCTURES ON SITE ARE TO BE REMOVED AS DIRECTED BY THE ENGINEER OR UNLESS OTHERWISE SPECIFIED. THE COST OF REMOVAL IS TO BE INCLUDED IN THE OVERALL EARTHWORKS FIGURE UNLESS A SPECIFIC ITEM FOR REMOVAL IS DENOTED IN THE SCHEDULE.
- 15. NO TOPSOIL IS TO BE REMOVED FROM SITE WITHOUT THE CONSENT OF THE SUPERINTENDENT.
- 16. FOR PAVEMENT RECOMMENDATIONS AND SOIL CONDITIONS REFER TO GEOTECH REPORT.
- 17. IT IS THE CONTRACTOR'S RESPONSIBILITY TO MAINTAIN SITE GRADING AND DRAINAGE AND TO PROTECT AND MAINTAIN SUBGRADES IN A SUITABLE CONDITION IN ORDER TO ACHIEVE THE COMPACTIONS SPECIFIED. SHOULD SUBGRADES BECOME SATURATED ANY UNSUITABLE MATERIAL IS TO BE REMOVED AND MADE GOOD WITH TYPE B GENERAL FILL AT THE CONTRACTORS COST.
- 18. IN NEW LANDSCAPE AREAS ALL REDUNDANT PAVEMENT MATERIAL SHALL BE REMOVED & REINSTATED WITH CLEAN FILL TO FINISHED SURFACE LEVEL. UNLESS NOTED OTHERWISE ON THE LANDSCAPE PLANS REINSTATEMENT. OF A MINIMUM 150mm OF CLEAN TOPSOIL SHALL BE PROVIDED TO ALL NATURE STRIP, LOT AND RESERVE.
- 19. ALL EXISTING TREES IN THE VICINITY OF THE TRAFFICABLE AREAS THAT ARE TO BE RETAINED SHALL BE PRUNED. ROOTS CUT AND SEALED WHERE THEY EXTEND BENEATH NEW WORKS, BY APPROPRIATELY QUALIFIED PERSONNEL. TREES TO BE REMOVED SHALL HAVE ALL ROOTS GRUBBED OUT AND BE MADE GOOD WITH COMPACTED FILL.
- 20. PRIOR TO COMPLETION, THE CONTRACTOR SHALL ENSURE THE SITE OF WORKS IS TIDIED AND OBTAIN A CLEARANCE FROM THE SUPERINTENDENT.
- 21. CONDITION OF EXISTING PAVEMENT SURROUNDING THE DEVELOPMENT TO BE RECORDED. ANY DAMAGED AS A RESULT OF CONSTRUCTION ACTIVITIES TO BE REPAIRED TO COUNCIL'S SATISFACTION.

ROADWORKS

- 22. FILL BATTERS SHALL GENERALLY BE 1 IN 6 AND CUT BATTERS 1 IN 6 MAXIMUM CUT BATTERS ARE TO BE STABILISED TO THE SATISFACTION OF THE ENGINEER.
- 23. FOOTPATH EXPANSION JOINTS SHALL BE PLACED ON EITHER SIDE OF DRIVEWAY CROSSINGS. EACH JOINT IS TO BE DOWELLED WITH 3x10mm DIAMETER DOWELS WHICH ARE TO HAVE A GREASED SLEEVE OVER ONE END TO PERMIT SLIP. JOINTS ARE TO BE FILLED WITH AN APPROVED COMPOSITE MATERIAL OR PLASTIC FILLER.
- 24. ALL LINE MARKING IS TO BE APPLIED USING LONG LIFE THERMOPLASTIC PAINT, IN ACCORDANCE WITH AUSTRALIAN STANDARD AS 1742-1 AND AS 1742-2 AND COUNCIL REQUIREMENTS UNLESS OTHERWISE SPECIFIED. RRPM'S ARE TO BE INSTALLED IN ACCORDANCE WITH VICROADS AND/OR COUNCIL SPECIFICATIONS.
- 25. ALL TEMPORARY WARNING SIGNS DURING CONSTRUCTION SHALL BE IN ACCORDANCE WITH AS1742-3.
- 26. CONTRACTOR TO CONFIRM STREET NAME WITH COUNCIL/SUPERINTENDENT PRIOR TO MANUFACTURE OF STREET
- 27. ANY WORKS WITHIN ROADWAYS SHALL SATISFY COUNCILS REQUIREMENTS FOR OCCUPANCY OF ROAD RESERVES.
- 28. WHERE PAVEMENT (INCLUDING FOOTPATHS AND VEHICLE CROSSINGS) IS CONSTRUCTED ON FILLING, FILL MATERIAL IS TO BE APPROVED BY THE SUPERINTENDENT AND COUNCIL; AND CONSTRUCTED IN ACCORDANCE WITH AS1289.0-2000.
- 29. WHEN PAVEMENT EXCAVATION IS IN ROCK ALL LOOSE MATERIAL (INCLUDING ROCKS AND CLAY) MUST BE REMOVED. THE SUBGRADE MUST THEN BE REGULATED WITH COUNCIL APPROVED MATERIAL.
- 30. WHEN WORKS ARE ON AN EXISTING ROAD THE CONTRACTOR SHALL OBTAIN ALL NECESSARY ROAD OPENING PERMITS AND AUTHORITY APPROVALS PRIOR TO COMMENCING WORKS.

DRAINAGE

B 23.01.25 AT

REV DATE DRN CKD

13.11.24 NT MA K. LORRIMAR INITIAL ISSUE

APP

31. DRAINAGE PITS ARE TO BE SET OUT FROM OFFSETS AND CO-ORDINATES.

32. PITS AT TANGENT POINTS OF KERB RADIALS ARE TO BE LOCATED IMMEDIATELY ADJACENT TO T.P.

How ISSUED FOR COUNCIL SUBMISSION

33. ALL DRAINS WITHIN ROAD RESERVE SHALL BE BACKFILLED WITH 20mm FCR CLASS 3. DRAINS UNDER ROAD PAVEMENT TO BE BACKFILLED WITH 20mm FCR CLASS 2 AS SHOWN ON THE DRAWINGS. COMPACTION SHALL BE IN ACCORDANCE WITH SPECIFICATION.

AMENDMENT

- 34. ALL DRAINAGE PIPE CLASSES ARE TO BE AS PER THE DRAINAGE LONGITUDINAL SECTIONS.
- 35. ALL PIPES ARE TO BE RUBBER RING JOINTED REINFORCED CONCRETE UNLESS OTHERWISE NOTED.
- 36. 100mm DIAMETER CORRUGATED AGRICULTURAL PIPE DRAINS (AG's) ARE TO BE PLACED BEHIND ALL KERB AND CHANNEL, EDGE STRIP AND OTHER LOCATIONS WHERE SHOWN AND/OR DIRECTED BY THE ENGINEER.
- 37. PROPERTY INLETS WITHIN DRAINAGE EASEMENT ARE TO BE PLACED 1.00m FROM LOW CORNERS OF ALLOTMENTS UNLESS OTHERWISE SPECIFIED.
- 38. 100mm DIA HOUSE DRAINS IN ROADS TO BE PLACED <u>5.5m</u> FROM LOW CORNER OF ALLOTMENT UNLESS OTHERWISE
- 39. HOUSE DRAINS PASSING UNDERNEATH OR ADJACENT TO RETAINING WALLS SHALL BE CONSTRUCTED TO ACCOMMODATE INSPECTION OPENINGS AT APPROPRIATE INTERVALS, ENSURING EASY ACCESS FOR INSPECTION AND MAINTENANCE PURPOSES. CONTRACTOR SHALL ENSURE THAT THE INSPECTION OPENINGS UNDERNEATH RETAINING WALLS REMAIN ACCESSIBLE AND UNOBSTRUCTED.
- 40. PIPES LAID AT MINIMUM DEPTH ARE TO BE PROTECTED DURING CONSTRUCTION USING ADDITIONAL COVER OR A HIGHER CLASS PIPE IS TO BE INSTALLED.

ENVIRONMENTAL CONTROL MEASURES

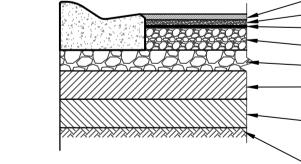
- 41. NO NATIVE VEGETATION SHALL BE DESTROYED, FELLED, LOPPED RING BARKED OR UPROOTED WITHOUT THE CONSENT OF THE RESPONSIBLE AUTHORITY.
- 42. ALL TREES ARE TO BE PROTECTED WITH APPROPRIATE EXCLUSION FENCING PRIOR TO COMMENCEMENT OF ANY WORKS UNLESS OTHERWISE SPECIFIED.
- 43. PERMISSION IN WRITING IS REQUIRED FROM THE SUPERINTENDENT PRIOR TO THE REMOVAL OF ANY TREE EVEN IF MARKED FOR REMOVAL ON PLANS.
- 44.PRIOR TO REMOVAL, TREES ARE TO BE MARKED BY CONTRACTOR AND APPROVED BY COUNCIL OR
- 45. CONTRACTOR TO PROVIDE ADEQUATE PROTECTION AGAINST SILT RUNOFF FROM THE SITE AS PART OF THE ENVIRONMENTAL MANAGEMENT PLAN (EMP).

- 46. WATER CONDUITS ARE TO BE INSPECTED BY THE SUPERVISING ENGINEER PRIOR TO BACKFILLING. CONDUITS TO EXTEND ON BOTH SIDES WHERE APPLICABLE TO 500mm BEYOND THE BUILDING LINE. ALL TRENCHES SHALL BE BACKFILLED WITH 20mm CLASS "2" FCR. WATER CONDUITS ARE TO BE LOCATED 1.4m FROM THE TITLE BOUNDARY OPPOSITE THE CROSSOVER OR 5.0m FROM THE TITLE BOUNDARY ADJACENT TO THE CROSSOVER, UNLESS OTHERWISE NOTED.
- 47. ELECTRICAL AND TELECOMMUNICATIONS CONDUITS TO EXTEND 500mm BEYOND BOTH SIDES OF KERB.
- 48. CONDUITS FOR TELECOMMUNICATIONS, GAS AND WATER SERVICES ARE TO BE POSITIONED TO AN APPROVED LOCATION UNLESS OTHERWISE NOTED AND ARE TO BE PLACED AT RIGHT ANGLES TO THE KERB AND SERVICE ALIGNMENT. TELECOMMUNICATIONS, GAS AND WATER CONDUITS ARE TO BE 50mm DIA PVC PIPES, CLASS 12. CONDUITS UNDER FOOTPATHS TO BE REFERENCED ON BACK OF PATH.

49. SERVICE TRENCHES NEAR FOOTPATH SHALL BE BACKFILLED WITH APPROVED GRANULAR MATERIAL.

- 50. ALL EXCAVATION FOR SERVICES MUST BE CONTAINED WITHIN EASEMENTS OR ROAD RESERVES. ANY EXCAVATION OUTSIDE THESE LIMITS MUST BE BACKFILLED WITH CLASS 3 OR CLASS 2 FCR AT 95% MODIFIED COMPACTION UNLESS NOTED OTHERWISE.
- 51. BACKFILL MATERIAL FOR CONDUITS UNDER ROADS SHALL BE CLASS 3 OR CLASS 2 FCR (20 MM NOMINAL SIZE) UNLESS OTHERWISE DIRECTED BY THE ENGINEER.
- 52. ALL SERVICE TRENCHES UNDER ROADS, DRIVEWAYS, FOOTPATHS AND PARKING BAYS TO BE BACKFILLED WITH COMPACTED CLASS 3 OR CLASS 2 CRUSHED ROCK. SERVICE TRENCHES LESS THAN 750mm BEHIND K&CH AND PARKING BAYS ARE ALSO TO BE BACKFILLED WITH COMPACTED CLASS 2 CRUSHED ROCK.
- 53. EXISTING SERVICE LOCATIONS SHOWN HAVE BEEN OBTAINED FROM DIAL BEFORE YOU DIG RECORDS AND/OR SITE PLANS. EXISTING SERVICES SHOWN ON THESE DRAWINGS ARE OFFERED AS A GUIDE ONLY AND ARE NO GUARANTEED AS CORRECT. PRIOR TO THE COMMENCEMENT OF WORKS, THE CONTRACTOR IS TO LOCATE ALL EXISTING SERVICES IN THE VICINITY OF PROPOSED WORKS AND UNDERTAKE ANY ON SITE INSPECTION WITH SERVICE AUTHORITIES AS NECESSARY. ANY DAMAGE CAUSED TO SERVICE AUTHORITIES ASSETS WHETHER SHOWN ON CONSTRUCTION PLANS OR NOT IS TO BE THE RESPONSIBILITY OF THE CONTRACTOR.
- 54. ALL EXISTING PITS AND SERVICE FITTINGS THAT ARE TO REMAIN WITHIN THE PAVEMENT AREAS SHALL BE REBUILT TO MATCH PROPOSED LEVELS AND WHERE APPLICABLE FITTED WITHIN AN APPROPRIATE HEAVY DUTY, AUTHORITY APPROVED COVER. ELSEWHERE EXISTING SERVICES SHALL BE ADJUSTED TO SUIT NEW ADJACENT LEVELS. THE RELEVANT AUTHORITY IS TO BE NOTIFIED PRIOR TO ANY WORKS ON THEIR ASSETS AND SERVICES ARE TO BE ADJUSTED TO THE RELEVANT AUTHORITY REQUIREMENTS.

CONSTRUCTION MANAGEMENT


- 55. CONTRACTOR SHALL BE REQUIRED PRIOR TO COMMENCING WORKS TO SUBMIT THE FOLLOWING DOCUMENTS:
- PROJECT CONSTRUCTION PLAN ENVIRONMENTAL MANAGEMENT PLAN
- OH&S RISK ASSESSMENT
- SITE MANAGEMENT PLAN PROGRAM OF WORKS
- COMPACTION TEST PLAN FOR ALL PAVEMENTS, FILLED AREAS AND DRAINAGE WORKS
- AND ALL OTHER RELEVANT INSPECTION AND TEST PLANS

180mm THICK CONCRETE (f'c = 32MPa, f'cf = 4MPa) 150mm THICK, 20mm NOMINAL SIZE CEMENT TREATED CRUSHED ROCK (E=500MPa)

150mm THICK (THICKNESS TO BE CONFIRMED DURING CONSTRUCTION) CONSTRUCTION LAYER (CAPPING LAYER MATERIAL OR SUBGRADE STABILISATION) PROPERTIES: CBR ≥ 15.0%, SWELL<1.5%, PERMEABILITY $\leq 5 \times 10^{-9} \text{ m/s}$)

EXTENDED DRIVEWAY TOTAL DEPTH = 480mm

MATCH TO EXISTING PAVEMENT $\,-\,$

LEVEL AT JOINT WEARING COURSE

300 MIN.

PAVEMENT JOINT DETAIL

(EXPANSIVE SUBGRADE)

NOT TO SCALE

REFER VPA STD DWG EDCM 201

TO OVERLAP THE EXISTING

PAVEMENT BY 300mm

ASPHALT LAYER

BASE LAYER+

PPER SUB-BASE LAYER

WER SUB-BASE LAYER

CAPPING LAYER

CONSTRUCTION LAYER

10mm PRIME COAT AND SAMI TREATMENT (SIZE 10 S18RF) 130mm COMPACTED DEPTH, 20 NOMINAL SIZE, CLASS 2 CRUSHED ROCK 110mm COMPACTED DEPTH, 20mm NOMINAL SIZE, CLASS 3 CRUSHED ROCK 150mm COMPACTED DEPTH CAPPING LAYER OR SUBGRADE STABILISATION (REQUIREMENTS CBR \geq 15%, SWELL<1.5% & PERMEABILITY \leq 5 X 10⁻⁹ m/s) OR SUBGRADE STABILISATION) PROPERTIES: CBR ≥ 15%, SWELL<1.5% & PERMEABILITY $\leq 5 \times 10^{-9} \text{ m/s}$)

PAVEMENT PROFILE

(0-1000 VPD) OLEA WAY, TART STREET, LESTRA WAY

30mm COMPACTED DEPTH, SIZE 10 TYPE L ASPHALT WITH BINDER CLASS 320 30mm COMPACTED DEPTH, SIZE 10 TYPE N ASPHALT WITH BINDER CLASS 320 150mm COMPACTED DEPTH CONSTRUCTION LAYER (CAPPING LAYER MATERIAL - SUBGRADE: CLAY (CBR=3%)

HEAVY TACK COATING OF THE

PAVEMENT INTERFACE WITH

HOT POLYMER RUBBERISED

BITUMEN SEALANT

EXISTING PAVEMENT

"NO FINES" CONCRETE FILTER

100¢ SUBSOIL PAVEMENT DRAIN

TYPE 2 IN ACCORDANCE WITH

MATERIAL WITH FILTER FABRIC AROUND THE TRENCH

(150mm OVERLAY)

VICROADS SD1601

— 25mm

BEDDING

SAND

- COSSILL & WEBLEY IS NOT RESPONSIBLE FOR THE WORK OF SITE GEOTECHNICAL
- ALL PAVEMENT DESIGNS ARE EXTRACTS FROM THE SITE GEOTECHNICAL REPORT "R9782-3-R1".
- COSSILL & WEBLEY DOES NOT ACCEPT ANY RESPONSIBILITY FOR THE ACCURACY, ADEQUACY OR APPROPRIATENESS OF THE GEOTECHNICAL WORK & / OR PAVEMENT DESIGNS.

PAVEMENT PROFILE

KALAMATA BOULEVARD

TOTAL DEPTH = 640mm

(1001-2000 VPD)

Cossill & Webley SIG GROUP

W. SANSOM KLov

KALA ESTATE - STAGE 01 GENERAL NOTES AND PAVEMENT DETAILS JUNICIPALITY CARDINIA SHIRE COUNCIL REVISION

PAVEMENT DETAILS

- THE PAVEMENT DESIGNS SHOWN HAVE BEEN DESIGNED & PROVIDED BY SITE GEOTECHNICAL WHO ARE RESPONSIBLE FOR THE GEOTECHNICAL WORK ON THIS PROJECT.
- THIS DOCUMENT SHOULD BE REVIEWED TO ENSURE THAT THE DESIGN HAS BEEN ACCURATELY REPRODUCED.
- ANY QUERIES SHOULD BE ADDRESSED TO SITE GEOTECHNICAL AND SENT TO COSSILL & WEBLEY.
- COPYRIGH^{*} The concepts and information conta this document are the Copyright of Cossill & Vebley Consulting Engineers. Use or copying of the document in whole or part without the

his plan is not to be used for construction unless issued as revision 0 or higher

written permission of Cossill & Webley Consulting Engineers constitutes an infringement of copyright.

Street Address Melbourne VIC 3004 T (03) 8548 1560

Level 20, 390 St Kilda Road W cossillwebley.com.au

PROVED PE 0005927

NOT TO SCALE

PAVEMENT PLAN

NOT TO SCALE

PROPOSED KERB

ASPHALT

BASE COURSE

SUBBASE COURSE

CAPPING LAYER

(150mm MIN.)

CONSTRUCTION LAYER

(150mm MIN.)

20mm CLASS 3 CRUSHED ROCK OR

COMPACTED TO 97% MODIFIED

20mm CLASS 3 CRUSHED CONCRETE

SERVICE CONDUIT

600mm

SUBSURFACE DRAIN

(EXPANSIVE SOILS)

NOT TO SCALE

REFER VPA STD DWG EDCM 202a

100mm TOPSOIL

TYPE B FILL AS SPECIFIED

OF SERVICE CONDUITS

OR NO FINES CONCRETE

30mm COMPACTED DEPTH, SIZE 10 TYPE N ASPHALT WITH BINDER CLASS 320

30mm COMPACTED DEPTH. SIZE 10 TYPE N ASPHALT WITH BINDER CLASS 320

130mm COMPACTED DEPTH, 20 NOMINAL SIZE, CLASS 2 CRUSHED ROCK

150mm COMPACTED DEPTH, 20mm NOMINAL SIZE, CLASS 3 CRUSHED ROCK

150mm COMPACTED DEPTH CAPPING LAYER OR SUBGRADE STABILISATION

(REQUIREMENTS CBR ≥ 15%, SWELL<1.5% & PERMEABILITY ≤ 5 X 10⁻⁹ m/s)

OR SUBGRADE STABILISATION) PROPERTIES: CBR ≥ 15%, SWELL<1.5% &

150mm COMPACTED DEPTH CONSTRUCTION LAYER (CAPPING LAYER MATERIAL

10mm PRIME COAT AND SAMI TREATMENT (SIZE 10 S18RF)

PERMEABILITY $\leq 5 \times 10^{-9} \text{ m/s}$

- SUBGRADE: CLAY (CBR=3%)

PROOF ROLL PRIOR TO PLACEMENT

100¢ CLASS 400 PERVIOUS PIPE WITH

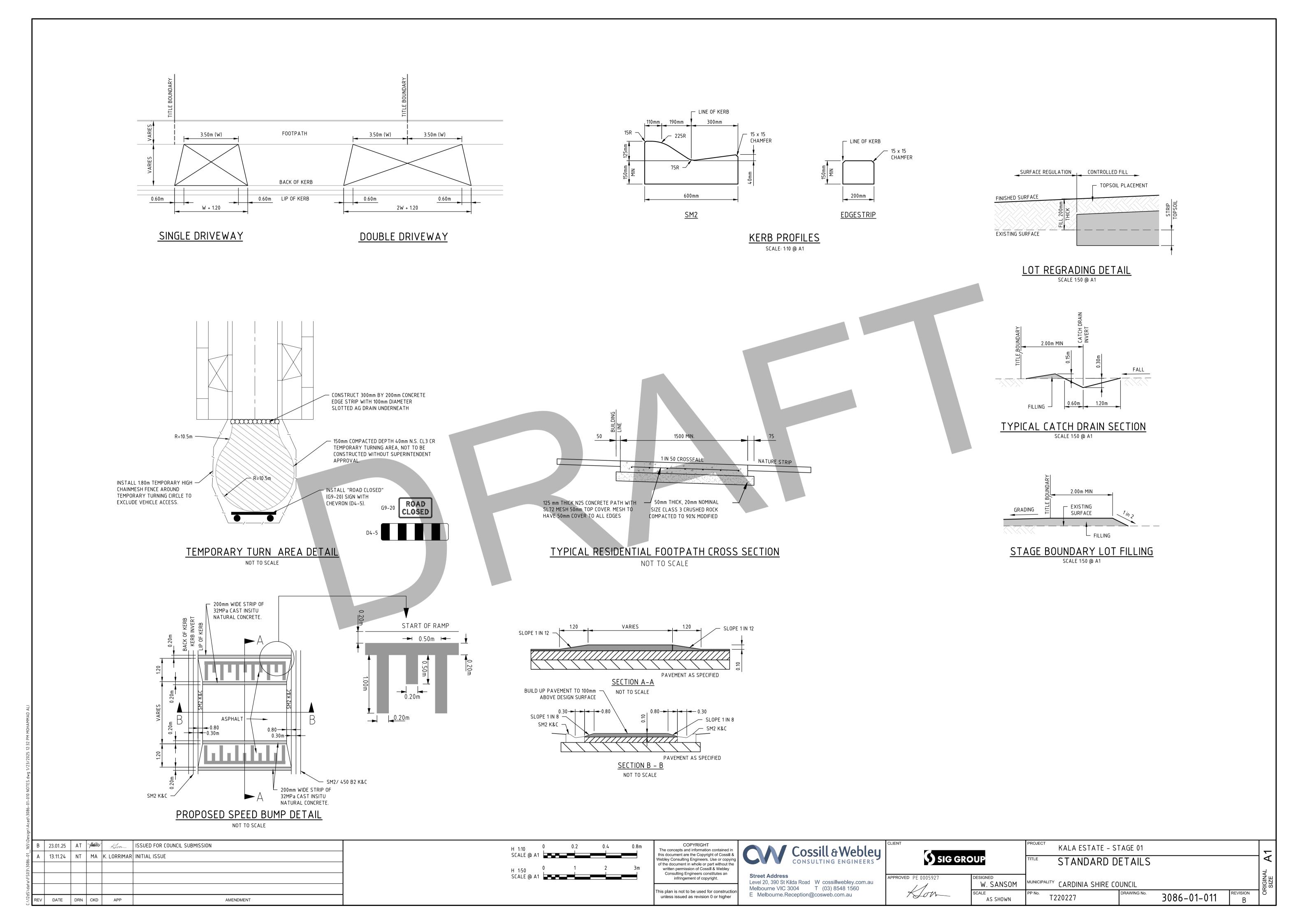
SECOND STAGE GEOTEXTILE SOCK. 20mm

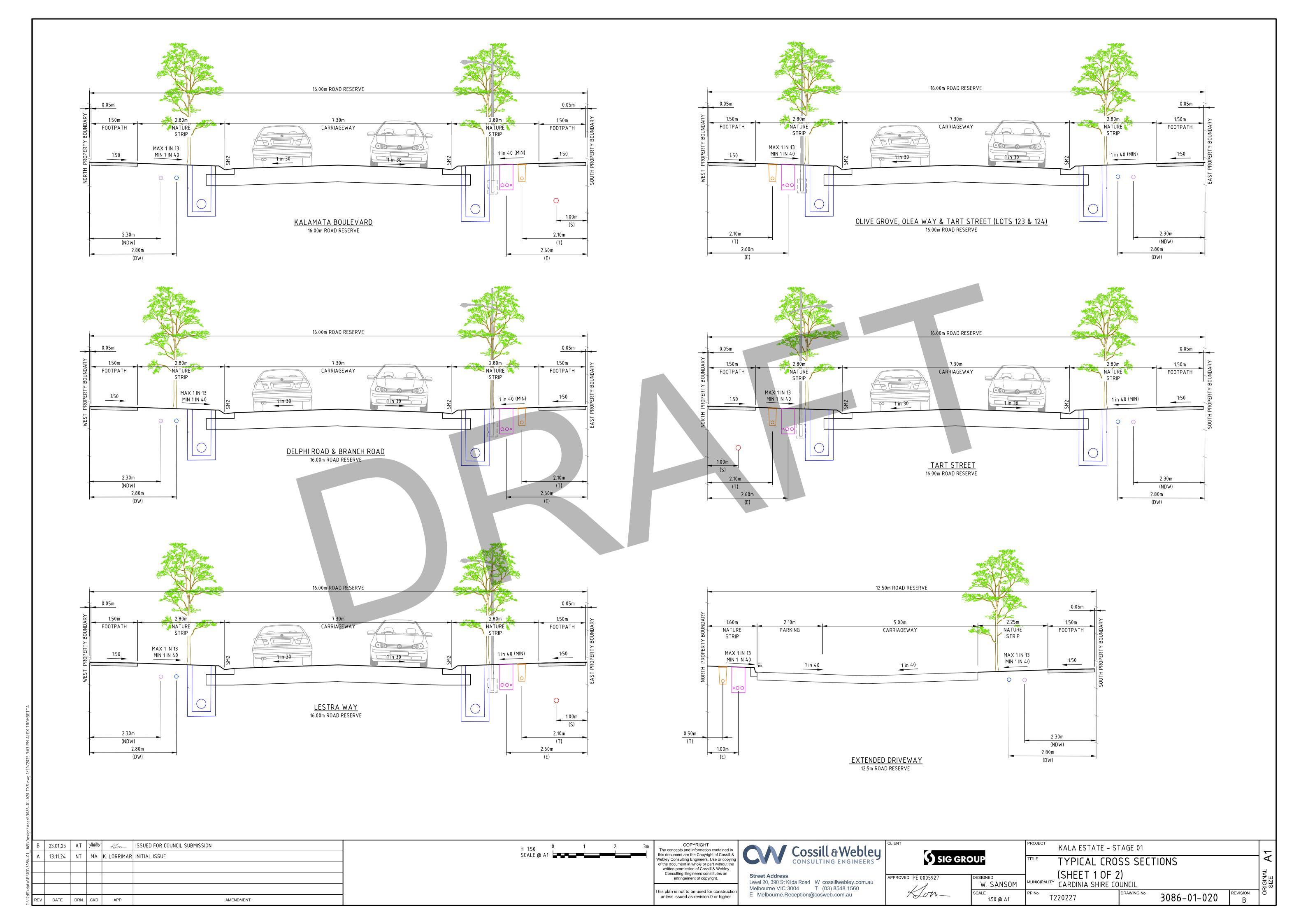
SIZED COUNCIL APPROVED SCREENINGS

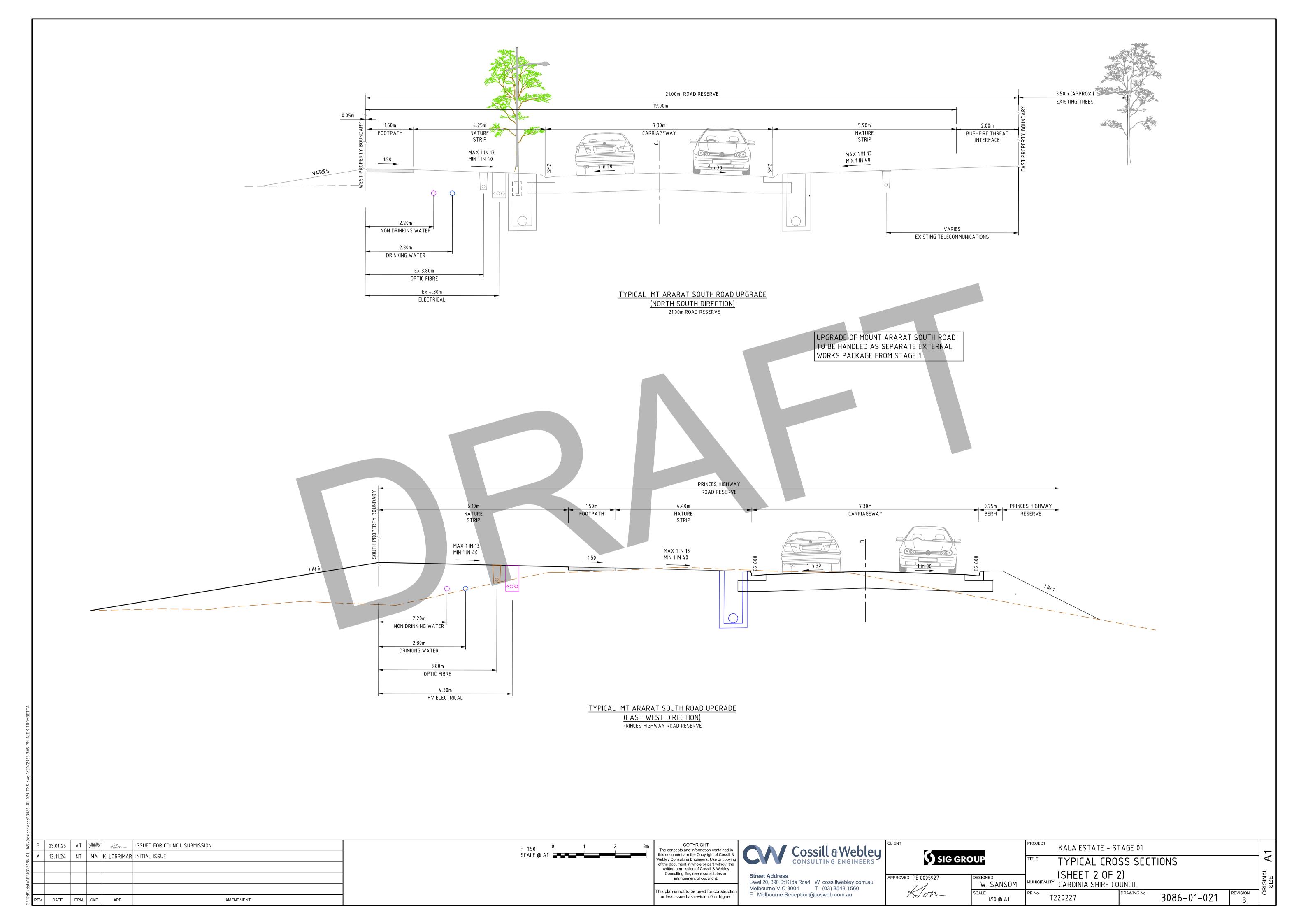
ROAD BOXING CHECKED FOR FORMATION

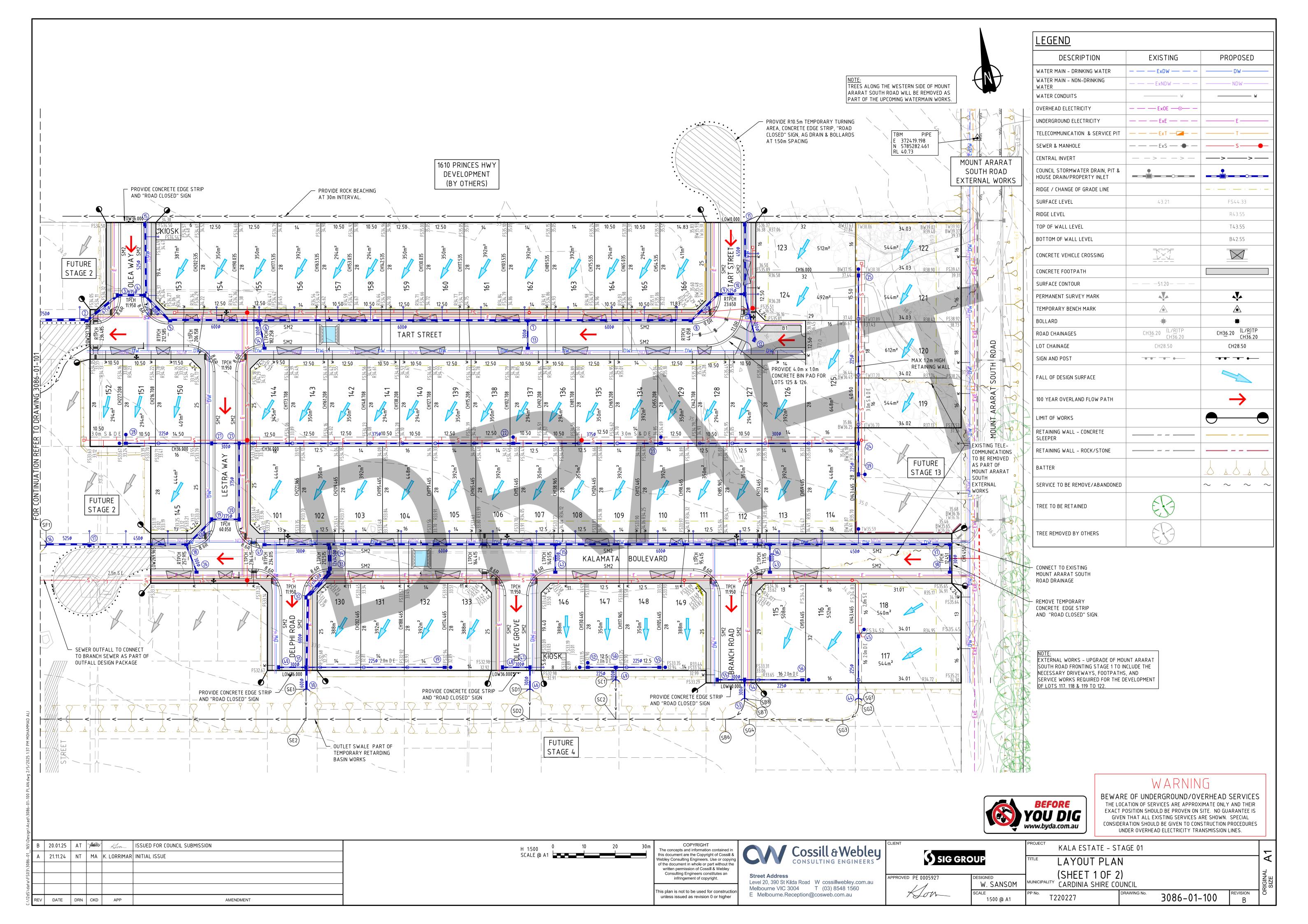
LINE AND LEVEL (NO PROOF ROLL

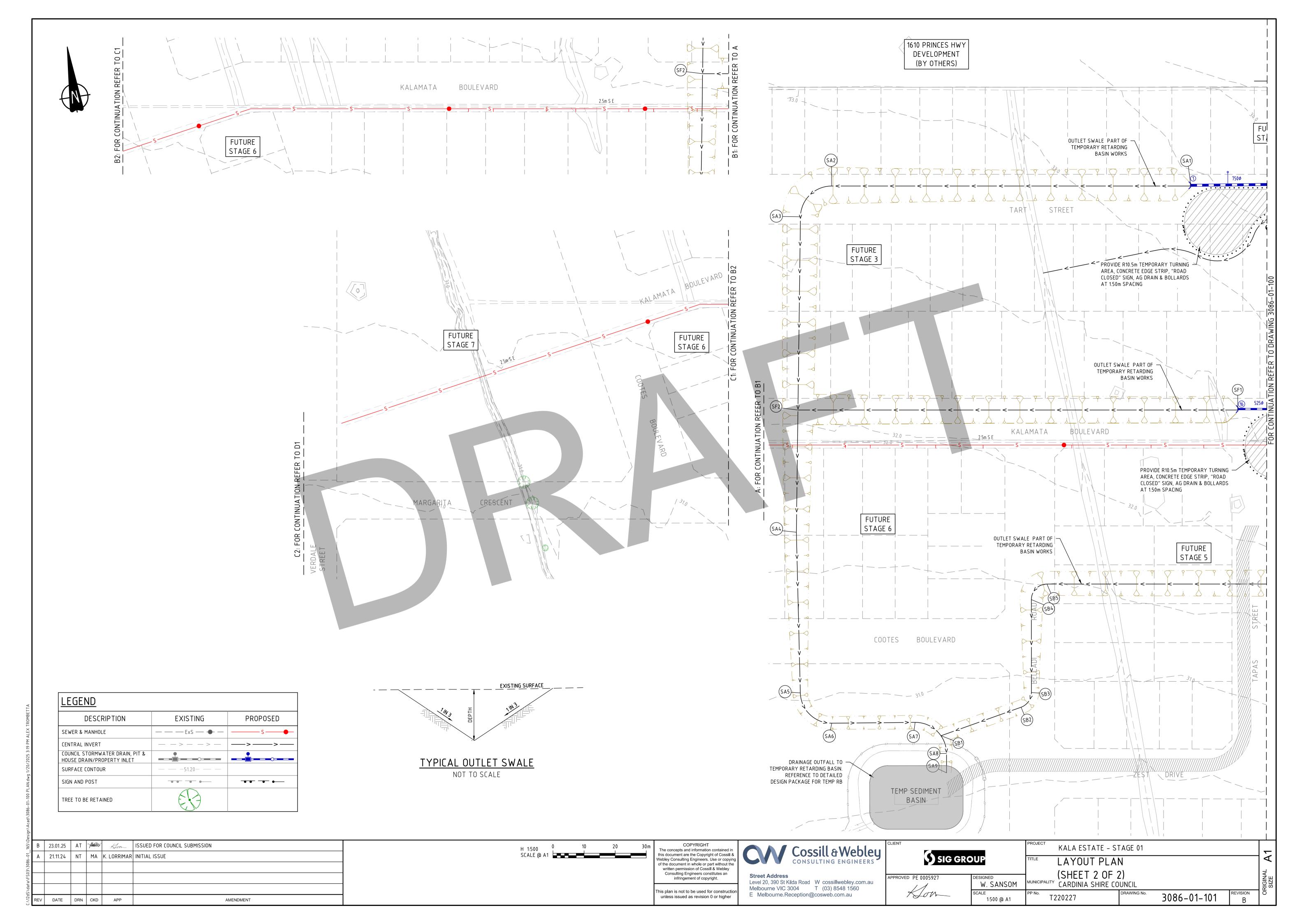
REQUIRED AT SUBGRADE WHEN

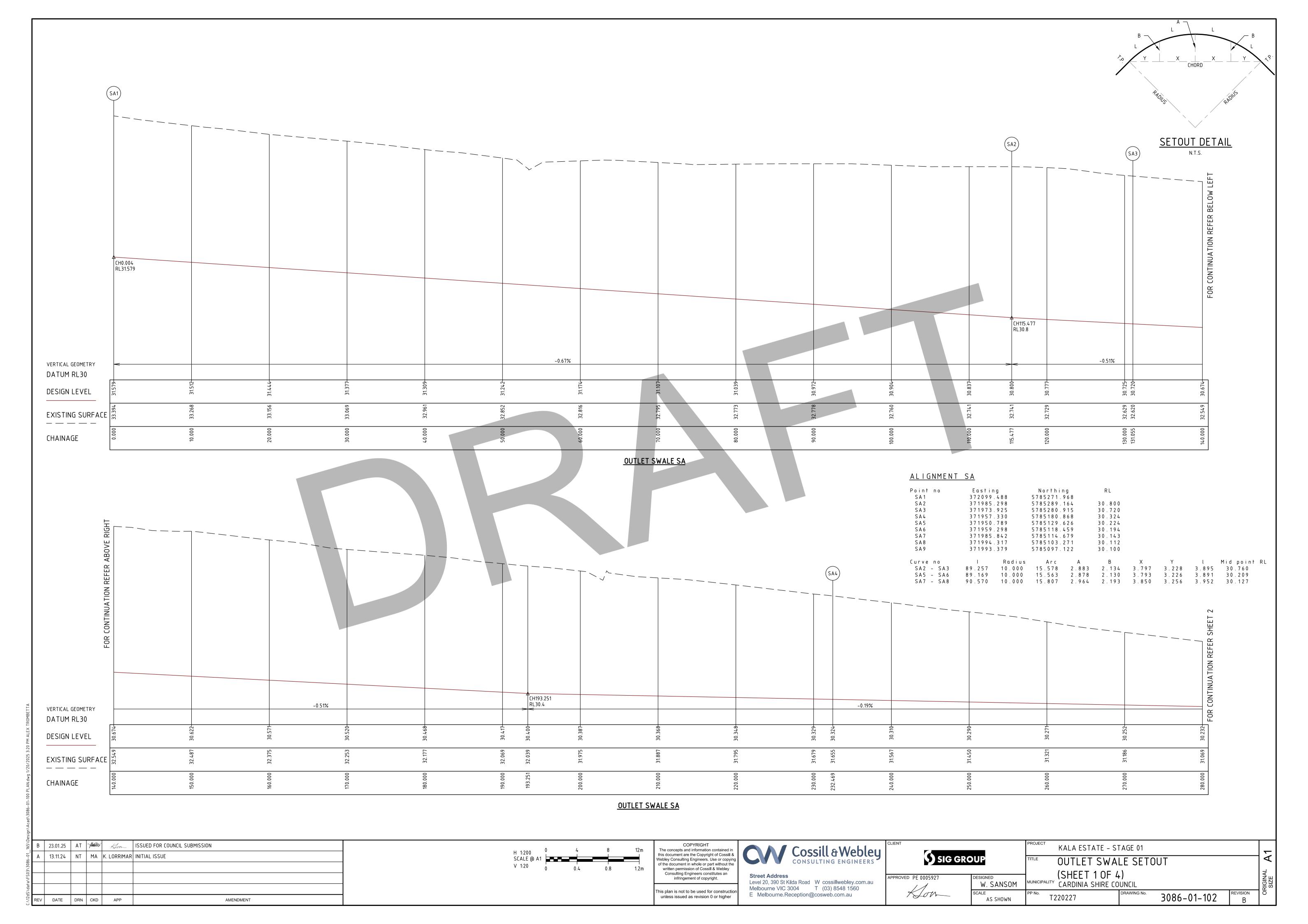

CONSTRUCTION LAYER IS USED)

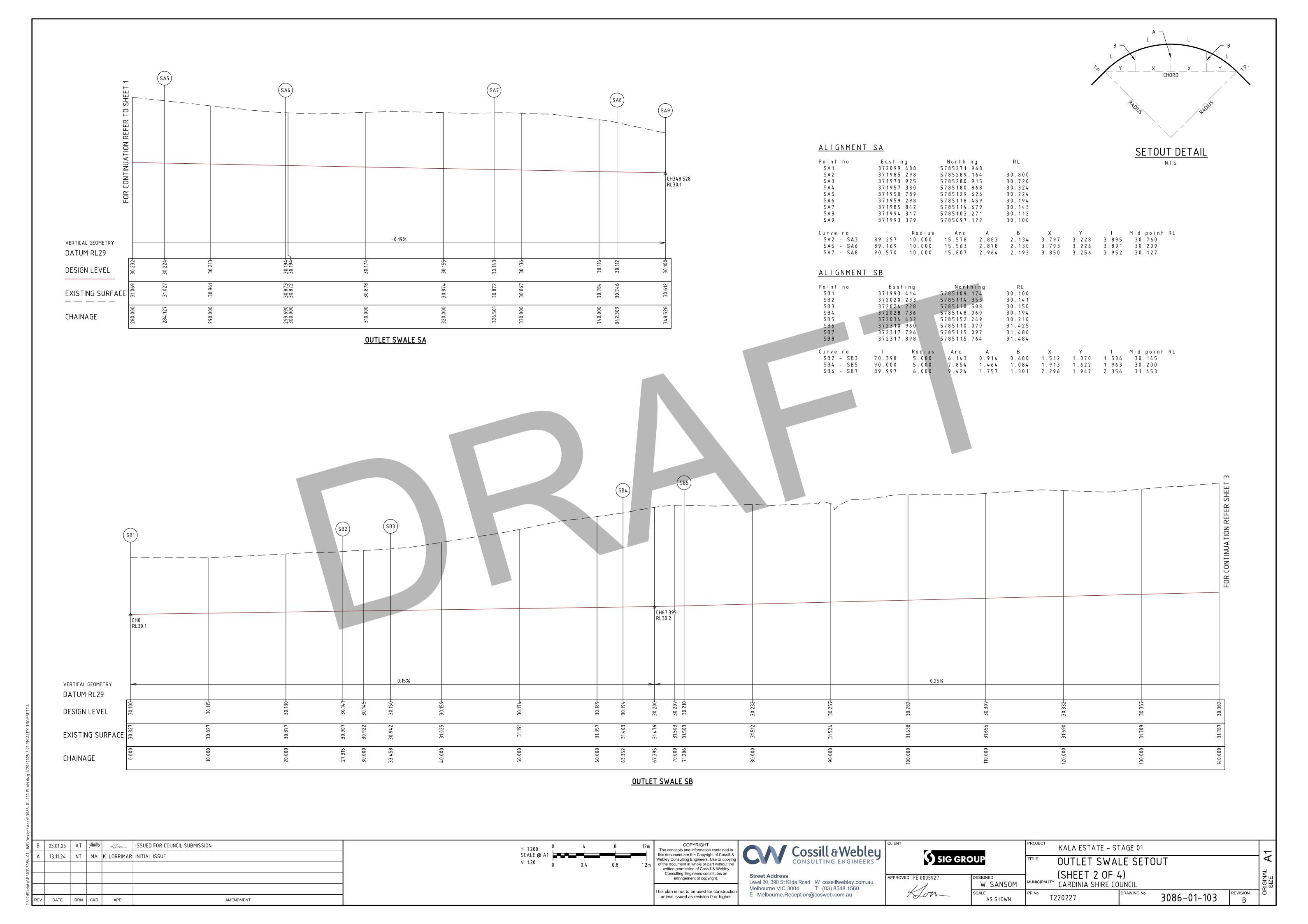

3086-01-010 T220227

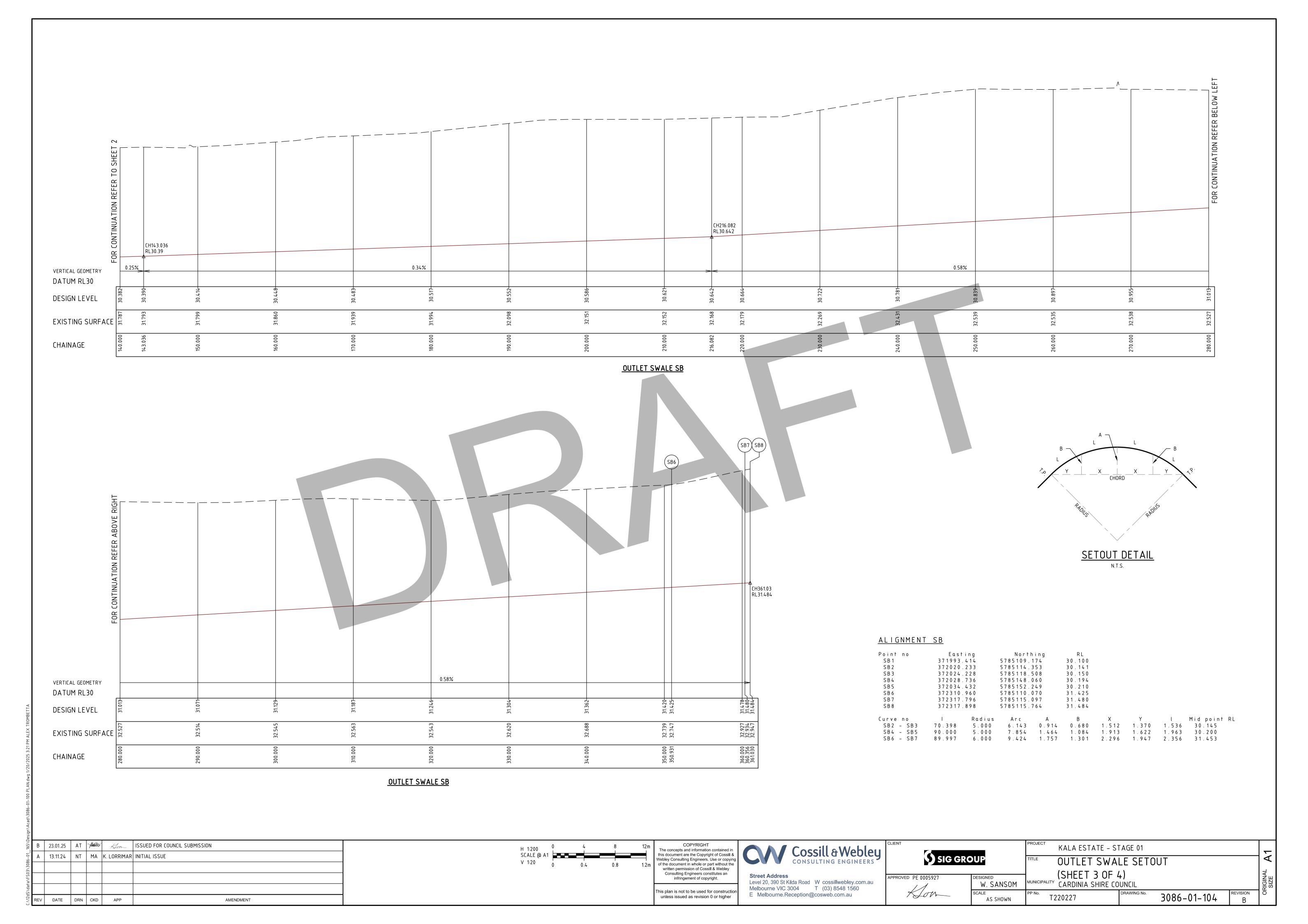

E Melbourne.Reception@cosweb.com.au

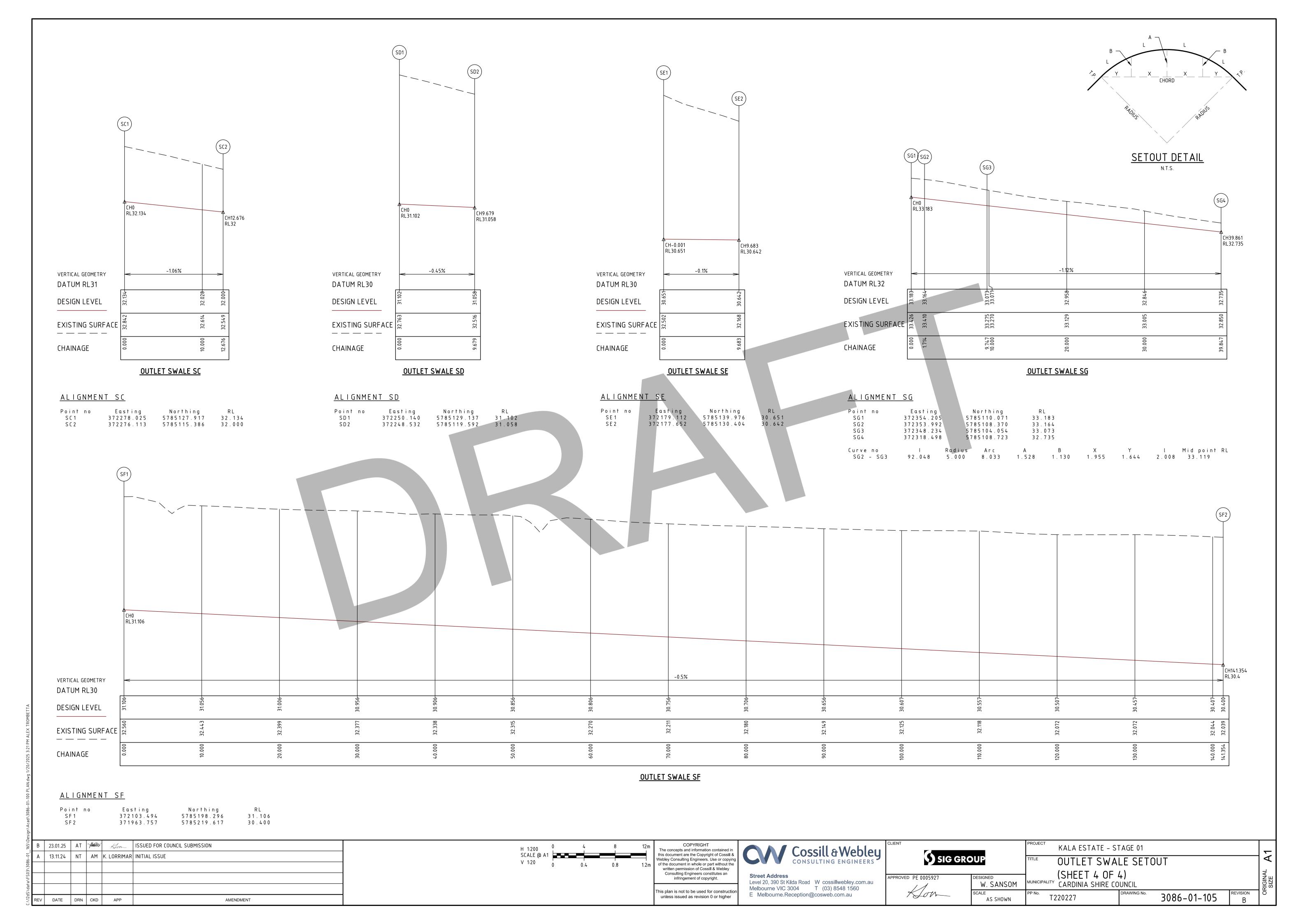

DELPHI ROAD, OLIVE GROVE & BRANCH ROAD TOTAL DEPTH = 600mm

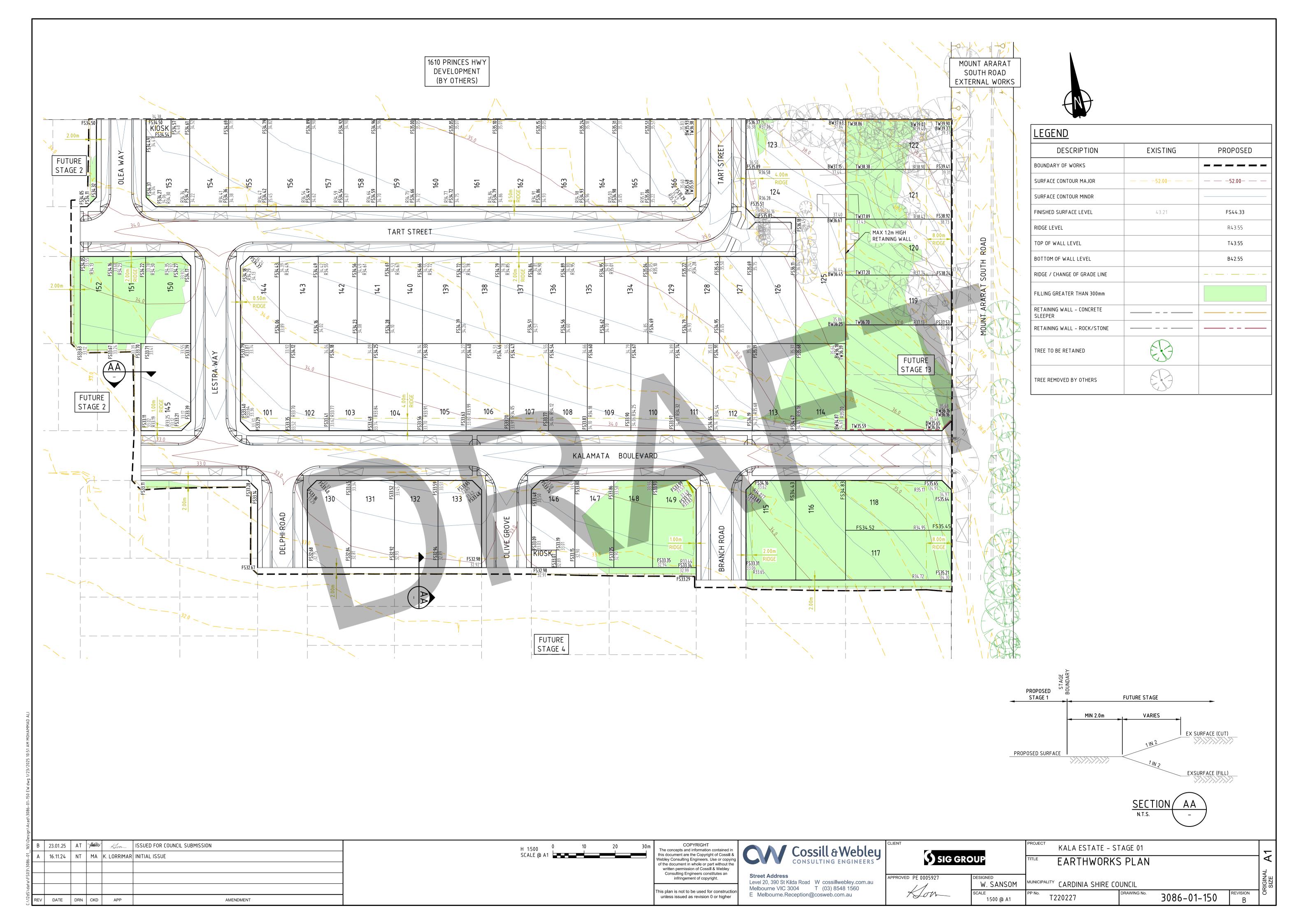

SUBGRADE: CLAY (CBR=3%) RIGID PAVEMENT **PROFILE**

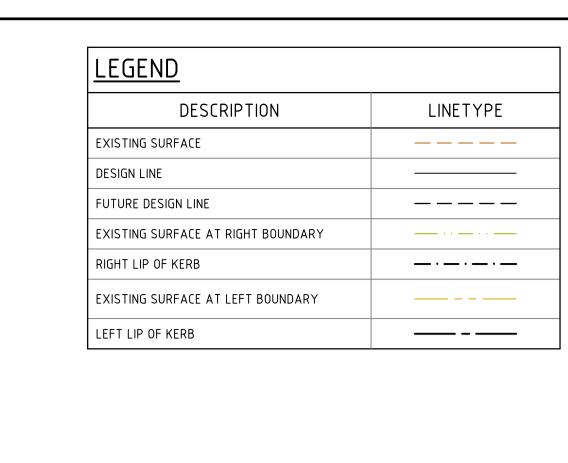


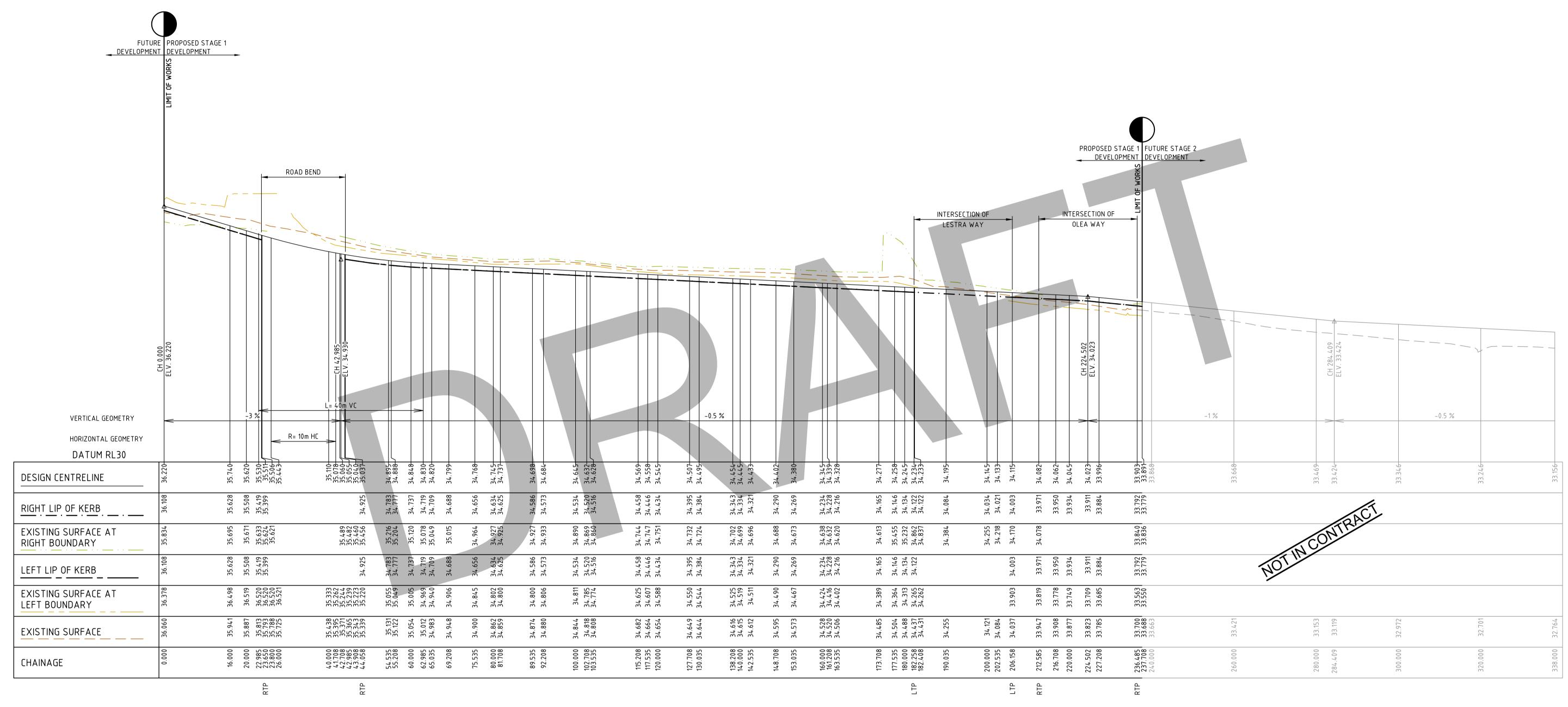


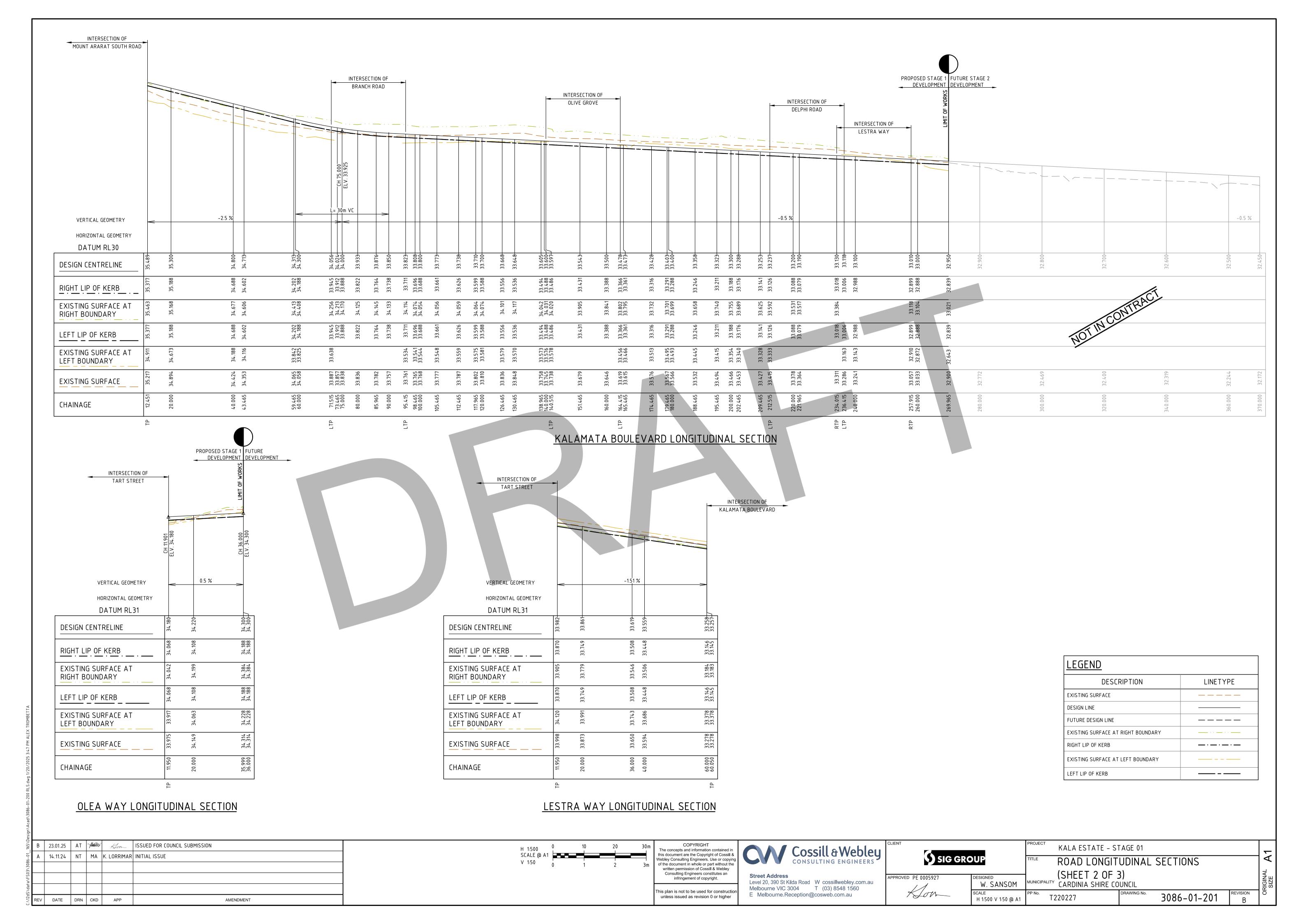


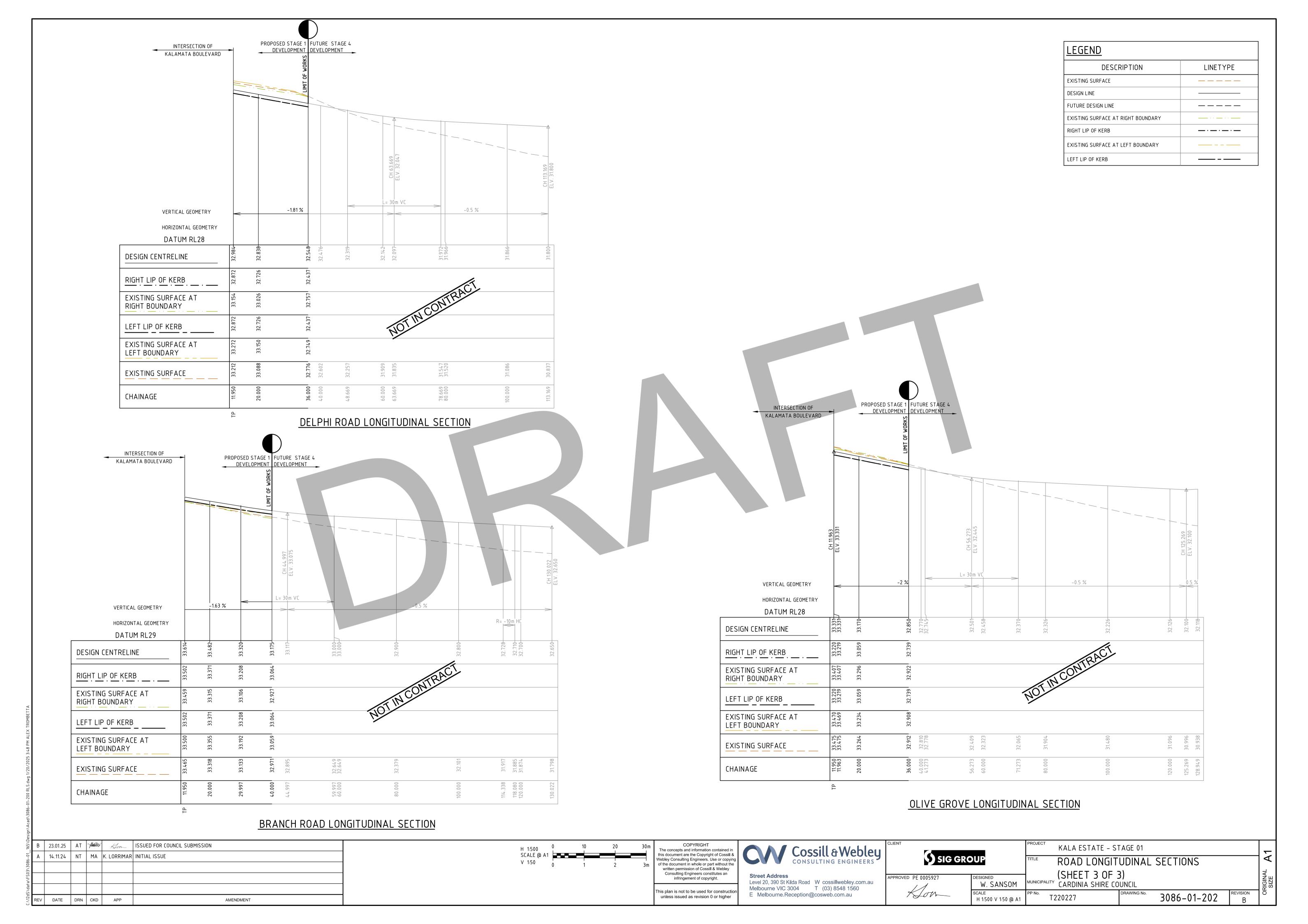


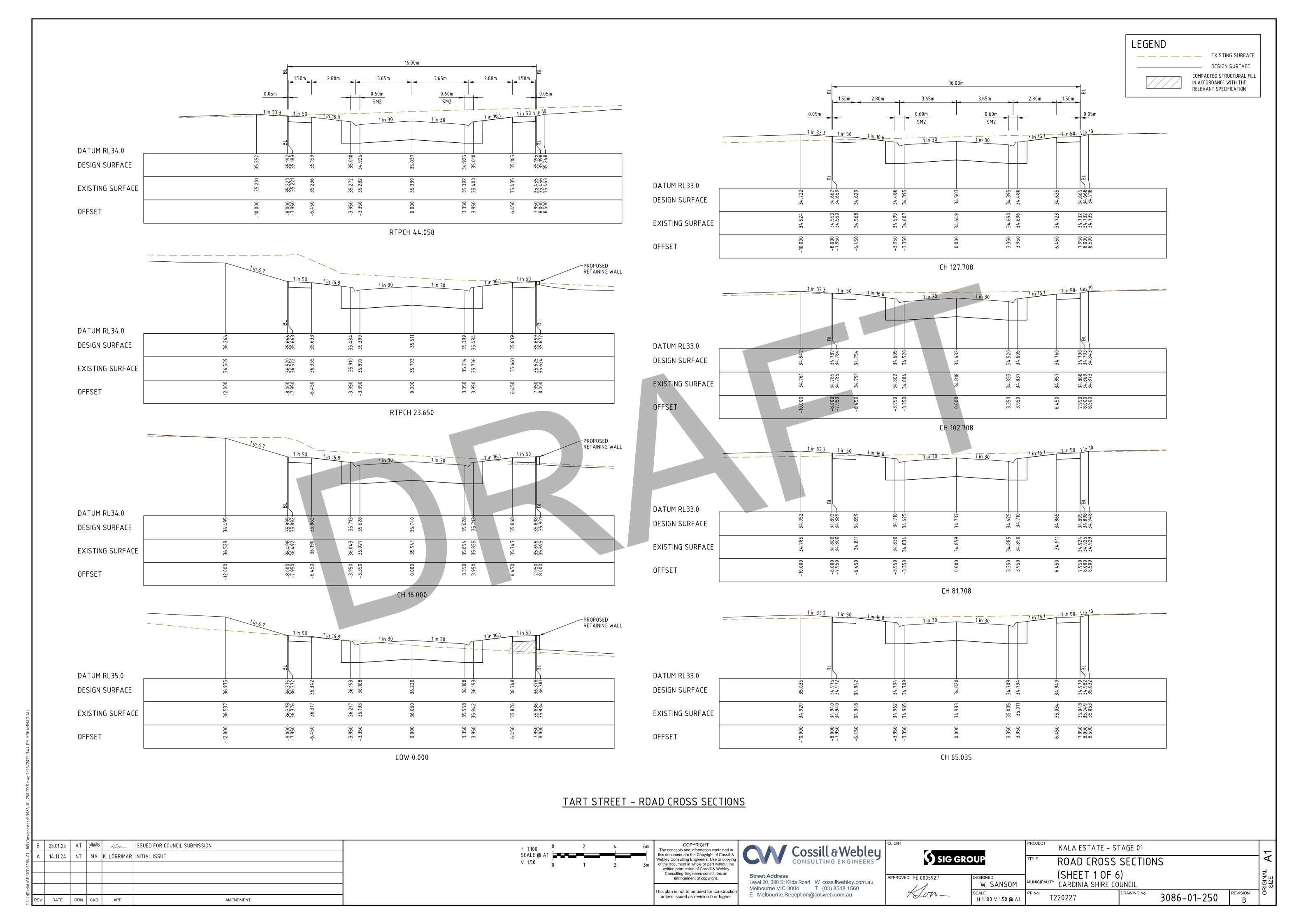


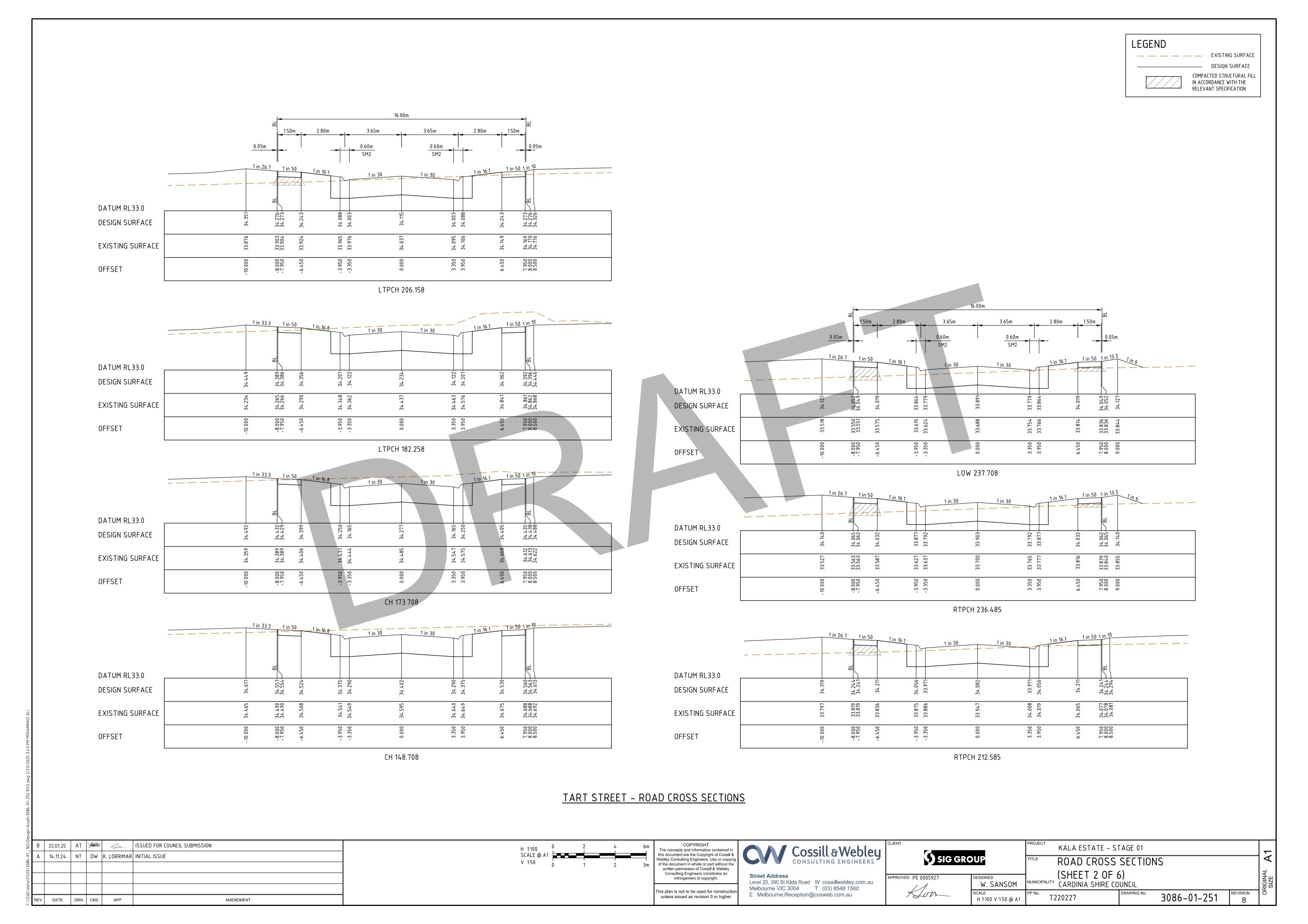


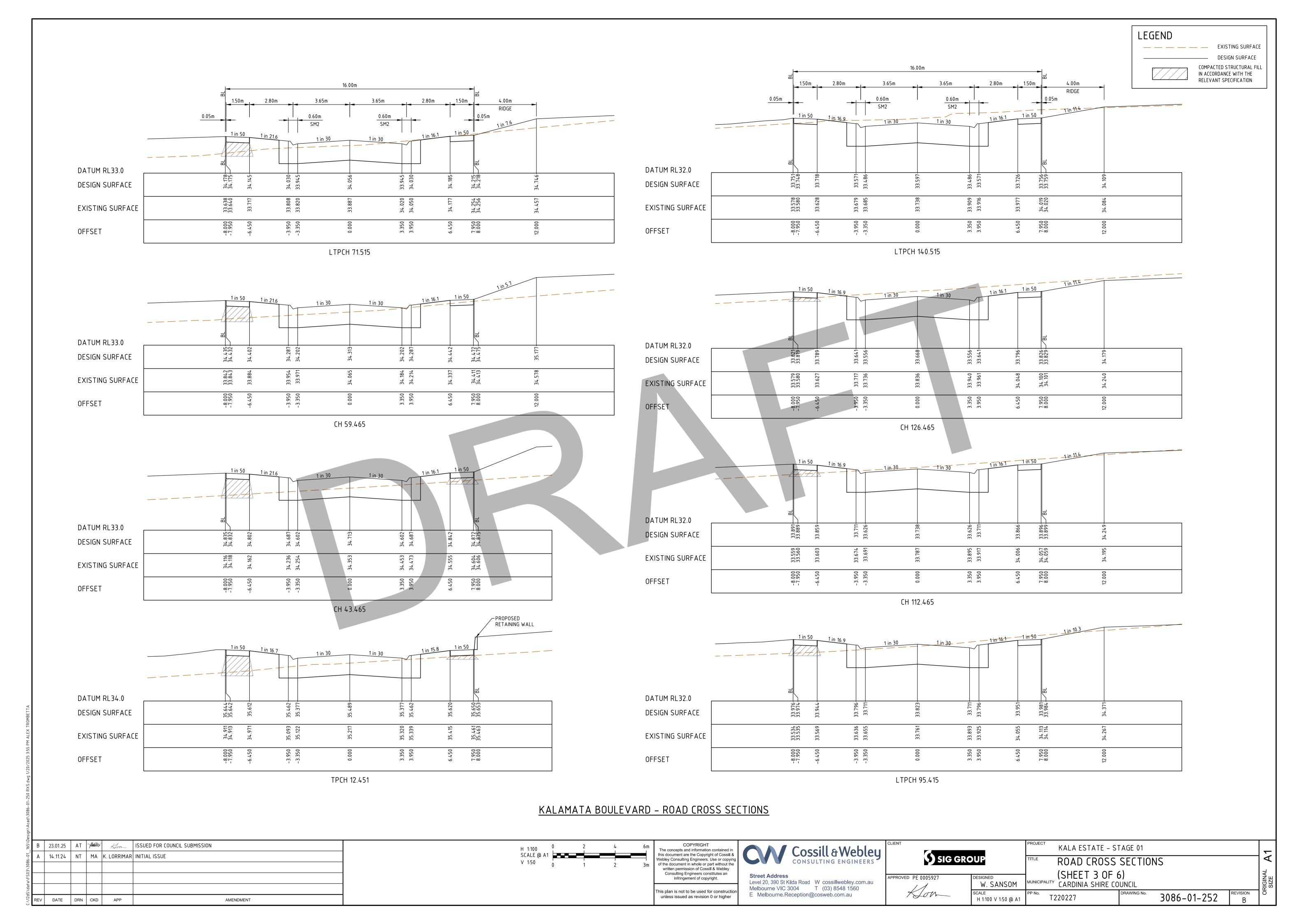


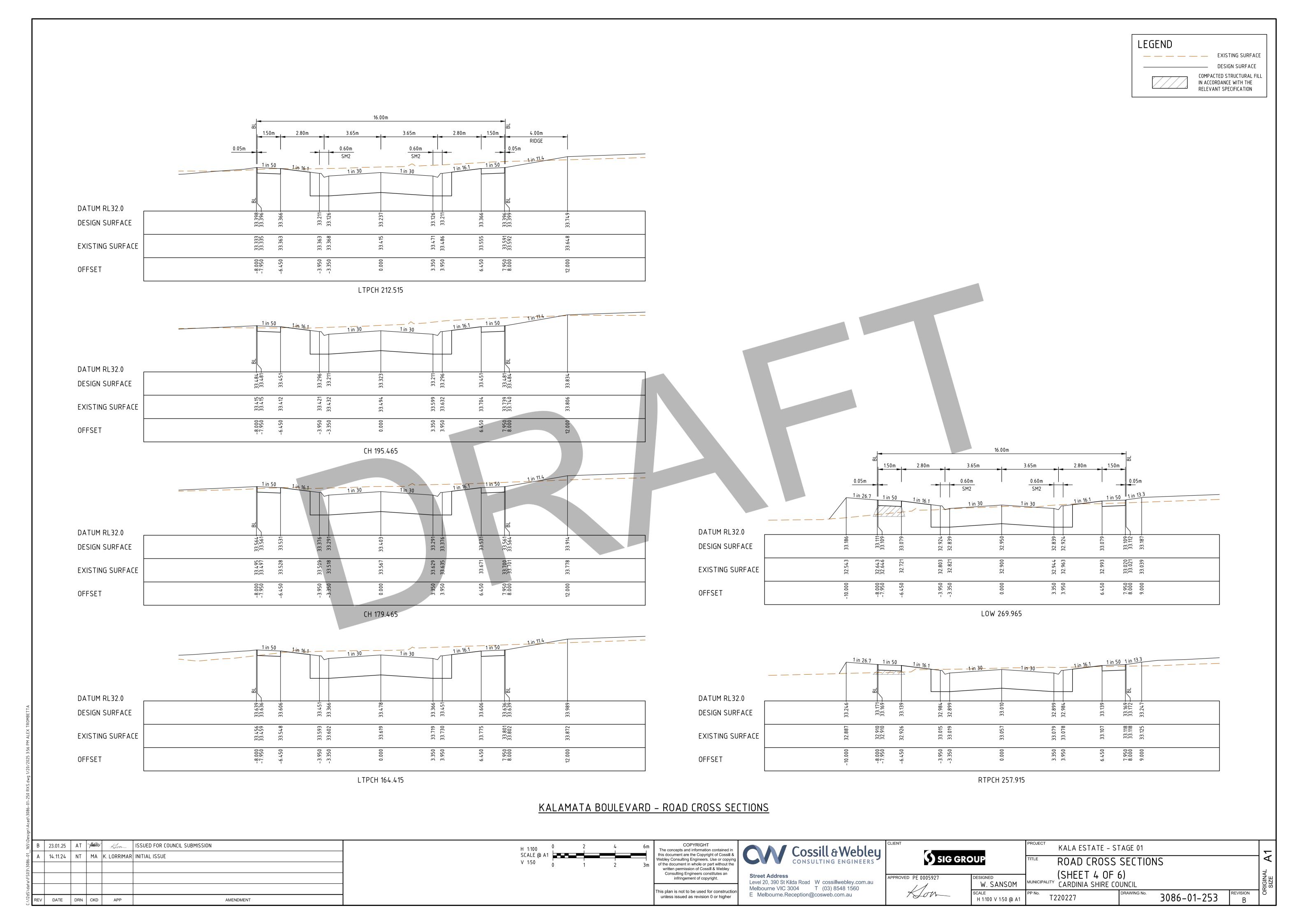


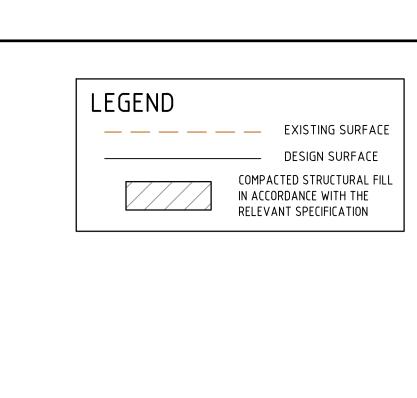


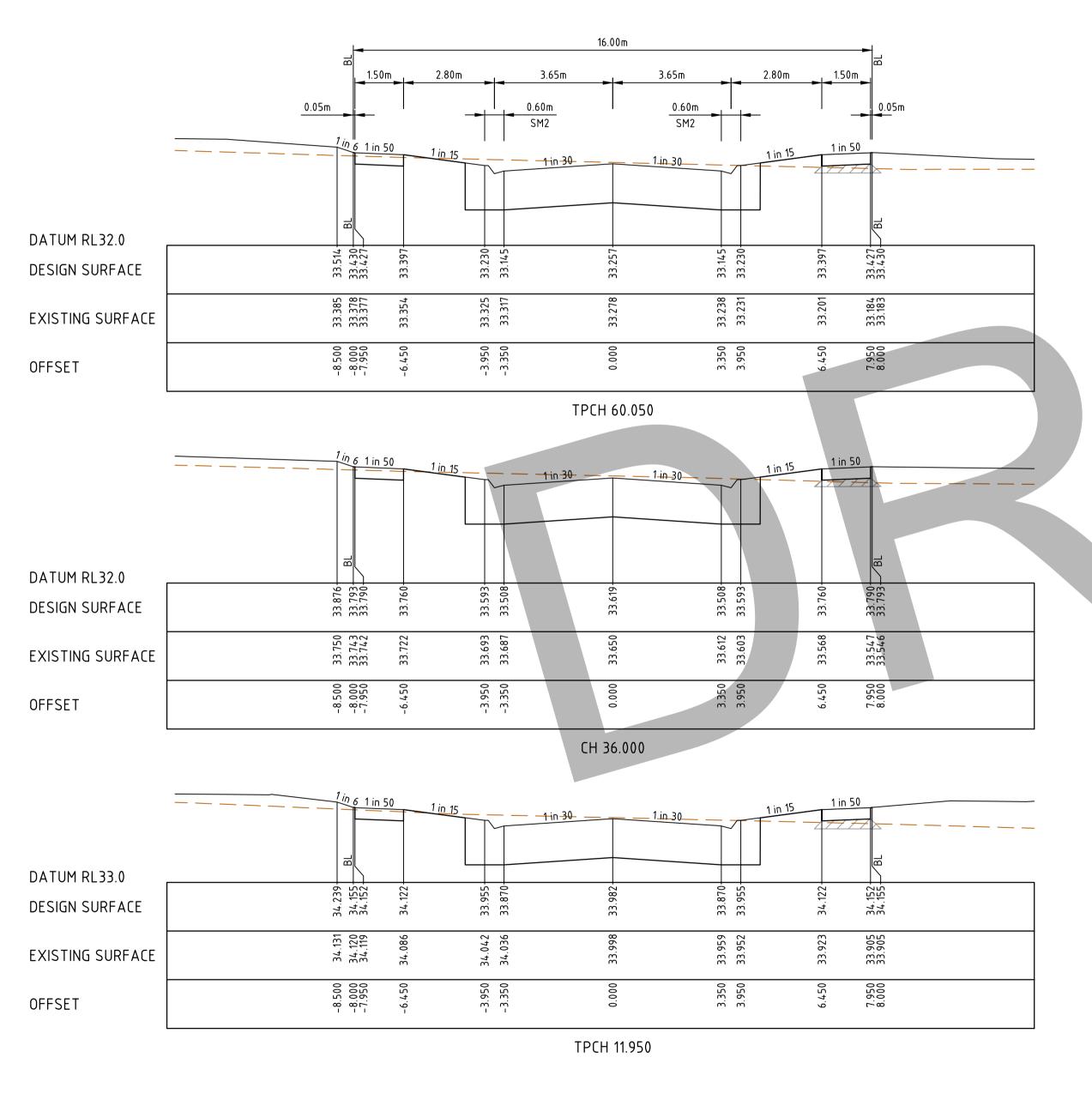


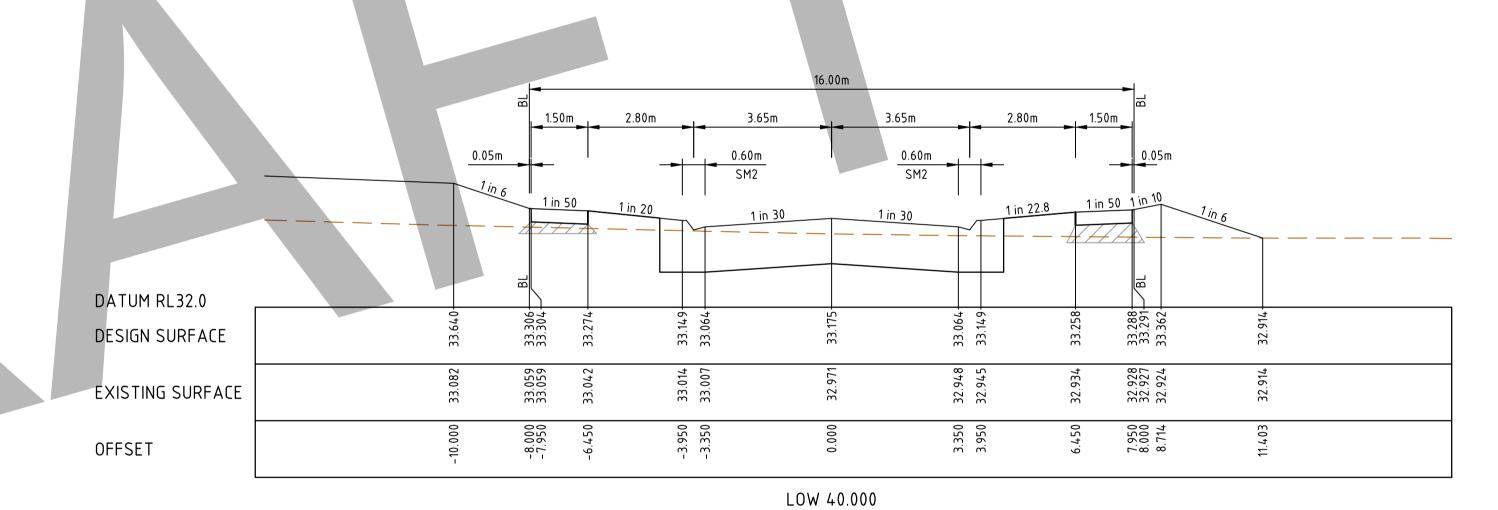

TART STREET LONGITUDINAL SECTION


_165\Design`	23.01.25 AT	Alami Klon	ISSUED FOR COUNCIL SUBMISSION	H 1:500 0 10 20 30m COPYRIGHT The concepts and information contained in this document are the Copyright of Cossill & Webleu CLIENT KALA ESTATE - STAGE 01	_
\FS03\3086-01_	14.11.24 NT	MA K. LORRIMAR	INITIAL ISSUE	V 1:50 0 1 2 3m Webley Consulting Engineers. Use or copying of the document in whole or part without the written permission of Cossill & Webley Consulting Engineers constitutes an infringement of copyright. Webley Consulting Engineers. Use or copying of the document in whole or part without the written permission of Cossill & Webley Consulting Engineers constitutes an infringement of copyright. Street Address APPROVED PE 0005927 DESIGNED TITLE ROAD LONGITUDINAL SECTIONS APPROVED PE 0005927 DESIGNED	t
C:\12dS\data	/ DATE DRN	CKD APP	AMENDMENT	This plan is not to be used for construction unless issued as revision 0 or higher Level 20, 390 St Kilda Road W cossillwebley.com.au Melbourne VIC 3004 T (03) 8548 1560 E Melbourne.Reception@cosweb.com.au Level 20, 390 St Kilda Road W cossillwebley.com.au Melbourne VIC 3004 T (03) 8548 1560 E Melbourne.Reception@cosweb.com.au Melbourne.Reception@cosweb.com.au Melbourne.Reception@cosweb.com.au Melbourne.Reception@cosweb.com.au Melbourne.Reception@cosweb.com.au Melbourne.Reception@cosweb.com.au Melbourne.Reception@cosweb.com.au Melbourne.Reception@cosweb.com.au Revision B Revision B	SIS









DATUM RL32.0

DESIGN SURFACE

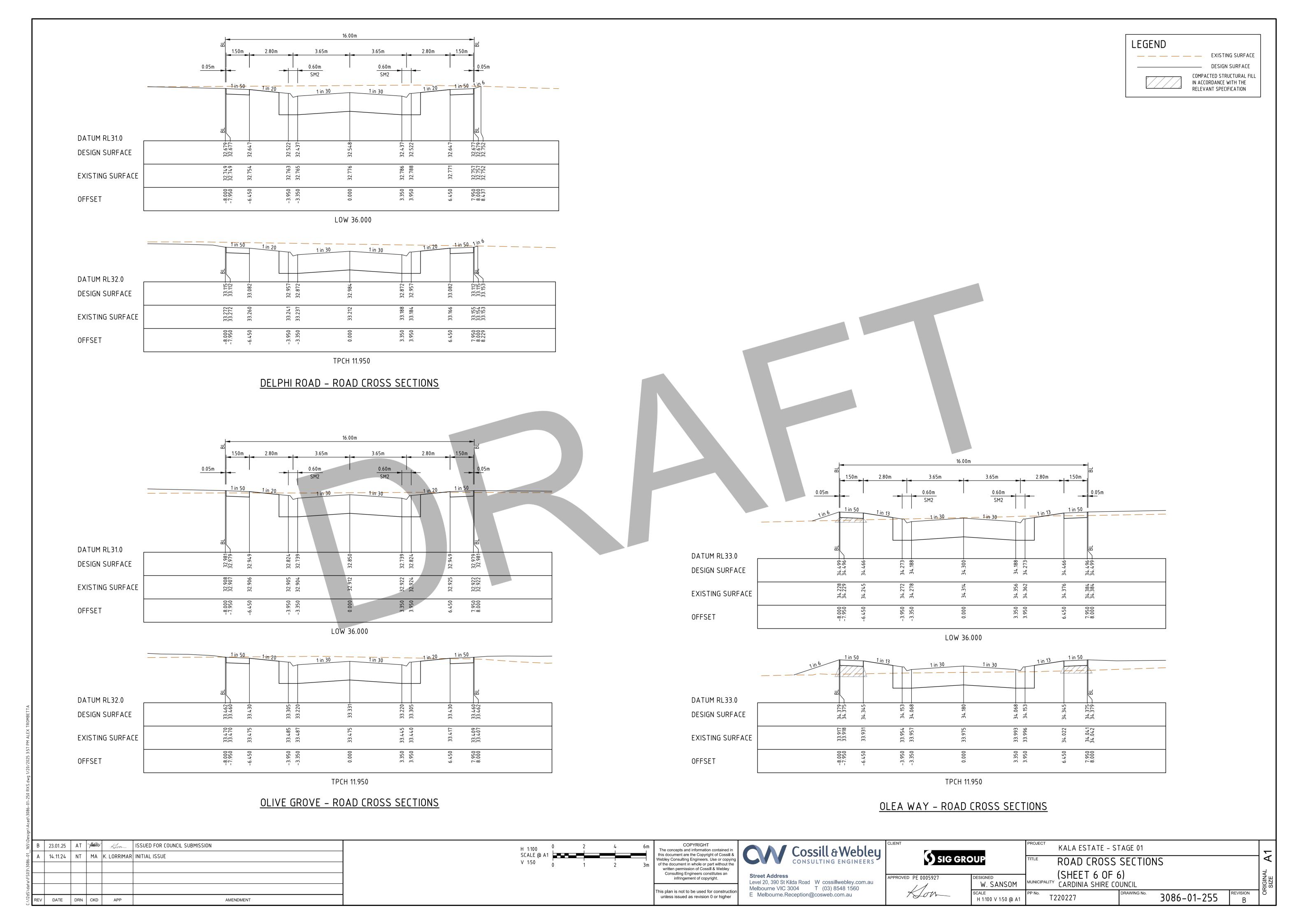
EXISTING SURFACE

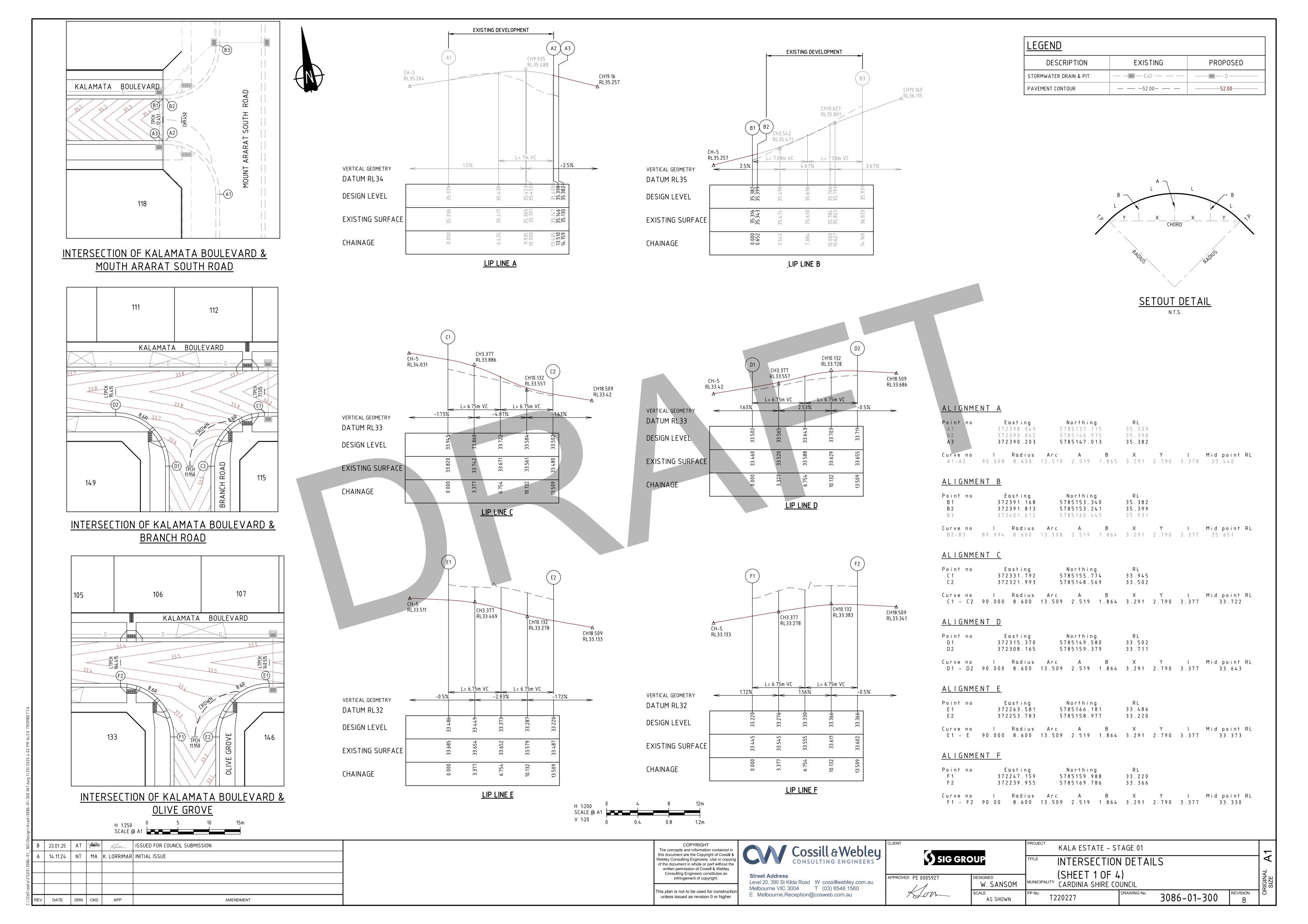
OFFSET

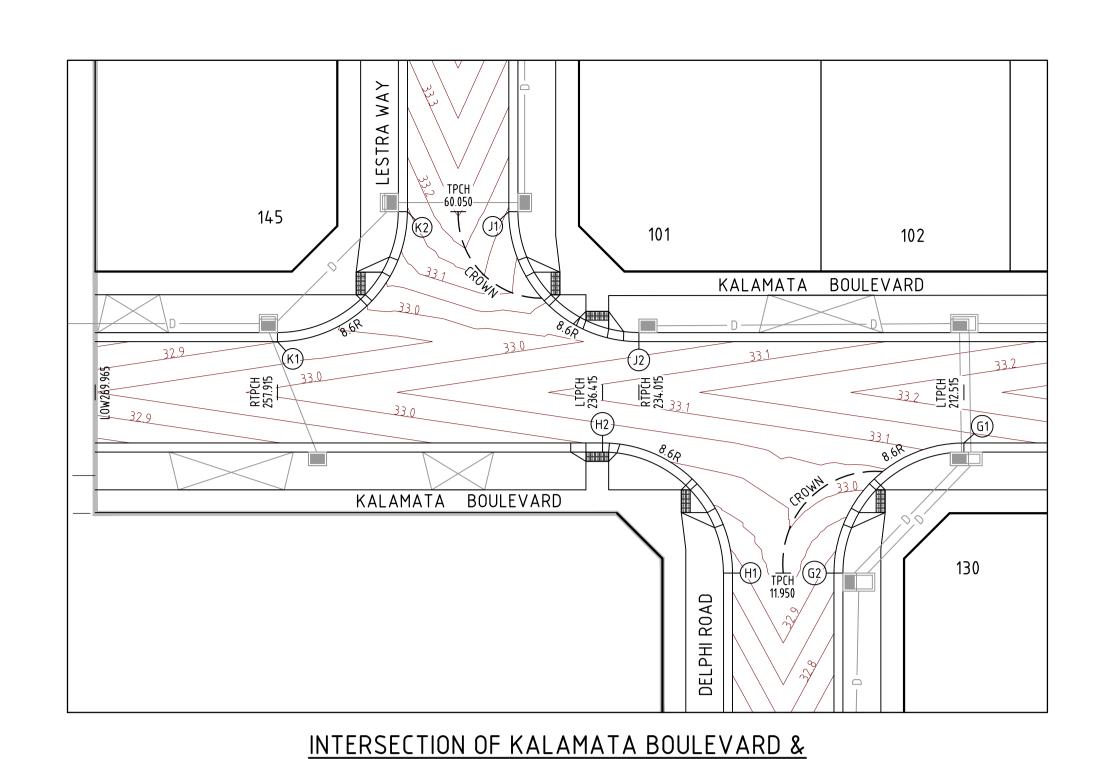
OFFSET

DATUM RL32.0

Lin 50


Lin 20


Lin 30


LESTRA WAY - ROAD CROSS SECTIONS

BRANCH ROAD - ROAD CROSS SECTIONS

B 23.01.25 AT How ISSUED FOR COUNCIL SUBMISSION	H 1:100 0 2 4 6m COPYRIGHT The concepts and information contained in this document are the Copyright of Cossill & Webley COPYRIGHT The concepts and information contained in this document are the Copyright of Cossill & Webley CLIENT KALA ESTATE - STAGE 01	
A 14.11.24 NT MA K. LORRIMAR INITIAL ISSUE	V 1:50 V 1:50	 ▼
1 FS03	Consulting Engineers constitutes an infringement of copyright. Street Address Level 20, 390 St Kilda Road W cossillwebley.com.au APPROVED PE 0005927 DESIGNED APPROVED PE 0005927 DESIGNED MUNICIPALITY CARDINIA SHIPE COUNCIL	SINAL
dS/dat,	This plan is not to be used for construction Melbourne VIC 3004 T (03) 8548 1560 W. SANSON CARDINIA STIRE COUNCIL SCALE DRAWING No.	ORIG
REV DATE DRN CKD APP AMENDMENT	unless issued as revision 0 or higher E Melbourne.Reception@cosweb.com.au T220227 T220227 T220227 T220227	

DELPHI ROAD / LESTRA WAY

H 1:250 0 5 10 SCALE @ A1

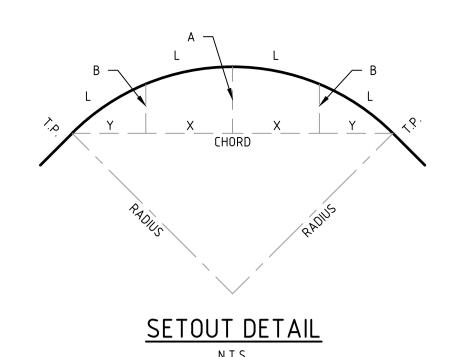
<u>ALIGNMENT G</u>

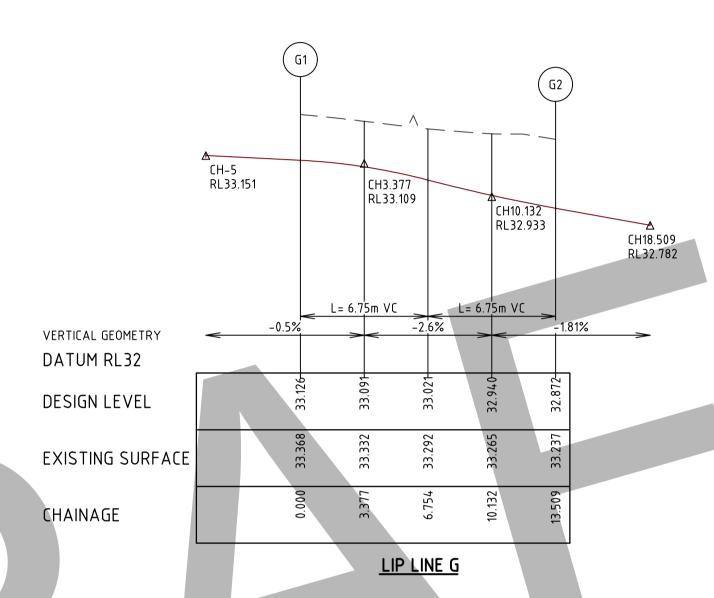
Point no

G 1 G 2 Easting 372192.405

372182.606

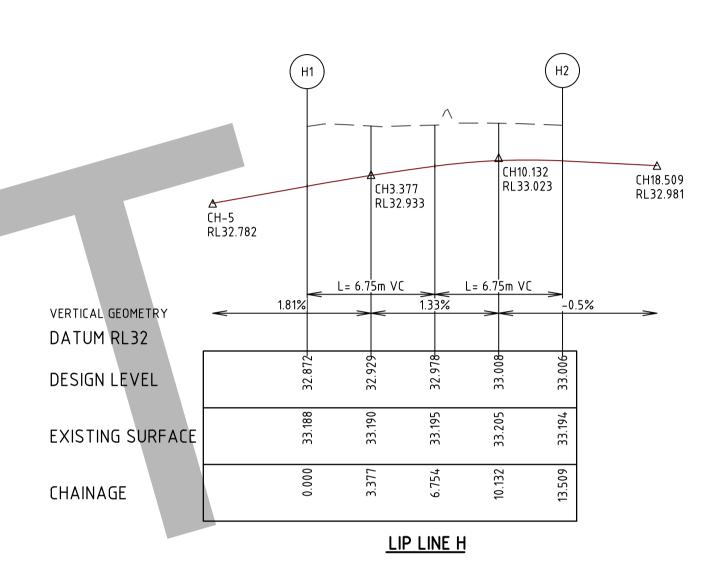
B 23.01.25 AT How ISSUED FOR COUNCIL SUBMISSION

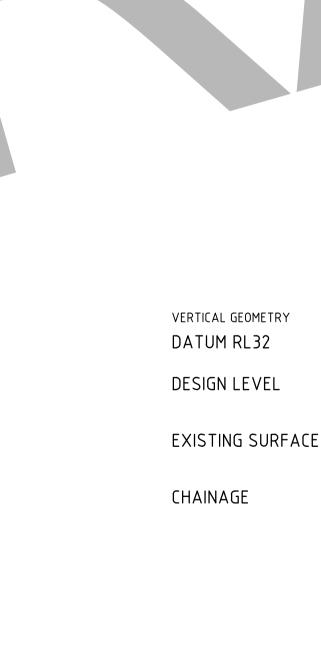

A | 14.11.24 | NT | MA | K. LORRIMAR INITIAL ISSUE

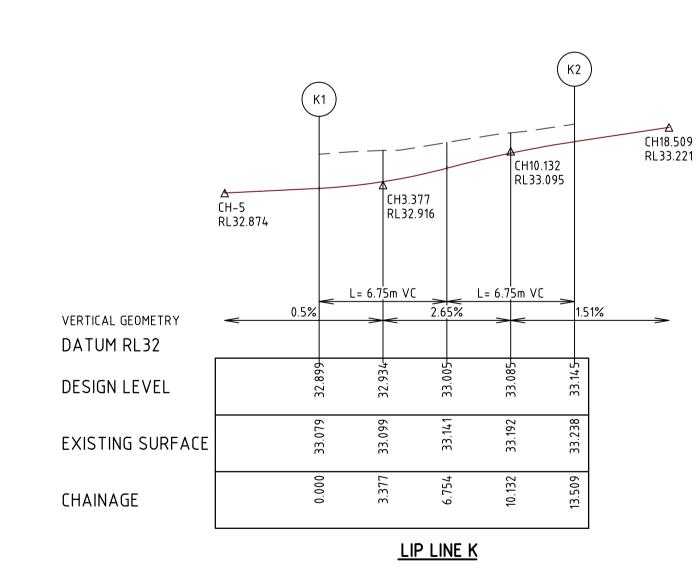

REV DATE DRN CKD APP

Northing 5785177.042

5785169.837


CH3.377 RL33.095


___ L= 6.75m VC ____ L= 6.75m VC


LIP LINE J

-1.38%

TCH10.132 RL33.001

CH18.509 RL33.043

Curve no G1 – G2	90.000	Radius 8.600	Arc 13.509	A 2 . 5 1 9	B 1 . 8 6 4	X 3 . 2 9 1	Y 2.790	l 3.377	Mid point 33.021
<u>ALIGNMEN</u>	<u>1T H</u>								
Point no H1 H2	Eastir 372175. 372168.	983	Northing 5785170.848 5785180.647	R L 3 2 . 8 ³ 3 3 . 0 0					
Curve no H1 - H2	90.000	Radius 8.600	Агс 13.509	A 2 . 5 1 9	B 1 . 8 6 4	X 3 . 2 9 1	Y 2.790	l 3 . 3 7 7	Mid point 32.978
ALIGNMEN	NT J								
Point no J1 J2	Eastii 372164. 372172.	957	Northing 5785196.707 5785186.908	R L 3 3 . 1 4 3 3 . 0					
Curve no J1 - J2	90.000	Radius 8.600	Агс 13.509	A 2 . 5 1 9	B 1 . 8 6 4	X 3 . 2 9 1	Y 2.790	l 3.377	Mid point 33.048
ALIGNMEN	NT K								
Point no K1	Eastir 372148. 372158.	5 3 5	Northing 5785190.513 5785197.717	RL 32.89 33.14	9 9				
K 2									

AMENDMENT

33.126 32.872

COPYRIGHT
The concepts and information contained in this document are the Copyright of Cossill & Webley Consulting Engineers. Use or copying of the document in whole or part without the written permission of Cossill & Webley Consulting Engineers constitutes an infringement of copyright.

This plan is not to be used for construction

unless issued as revision 0 or higher

CH-5 RL33.221

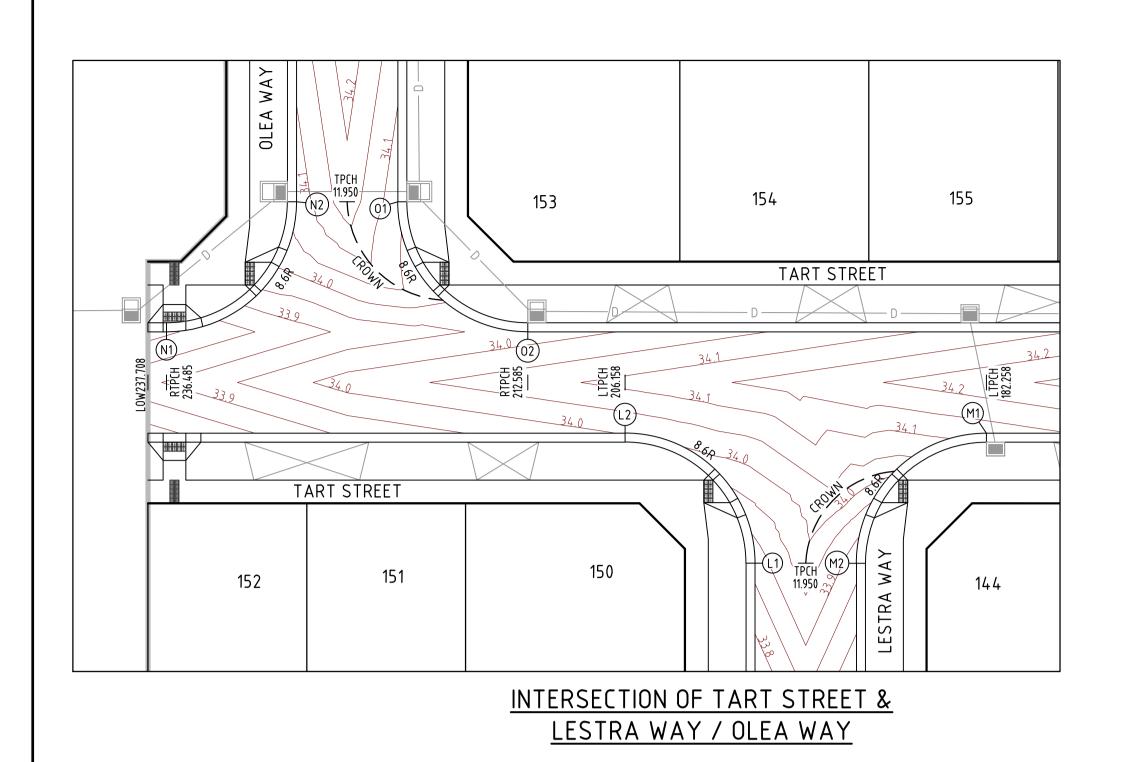
Street Address
Level 20, 390 St Kilda Road McCossillwebley.com.au
Melbourne VIC 3004 T (03) 8548 1560

E Melbourne.Reception@cosweb.com.au

SIG O	GROUP
ROVED PE 0005927	DESIGNED

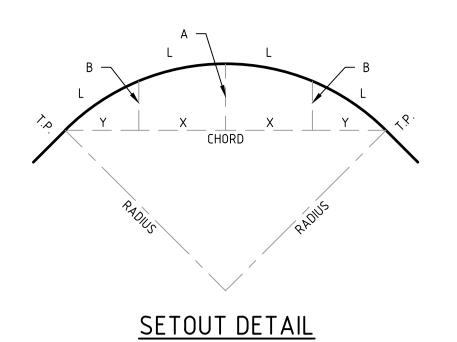
PROJECT KALA ESTATE - STAGE 01

TITLE INTERSECTION DETAILS

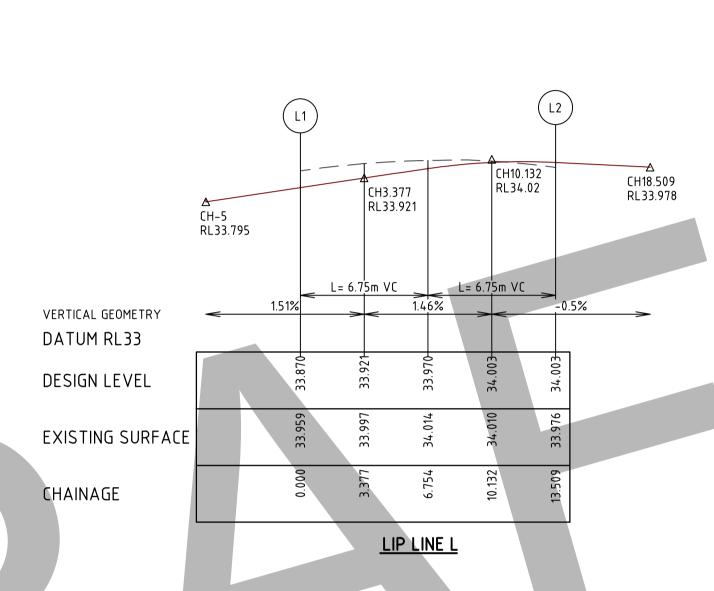

(SHEET 2 OF 4)

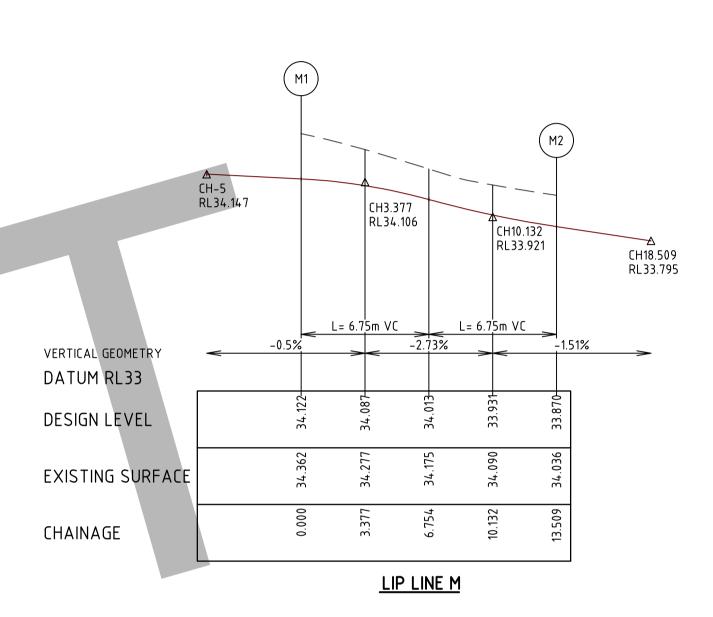
CARDINIA SHIRE COUNCIL

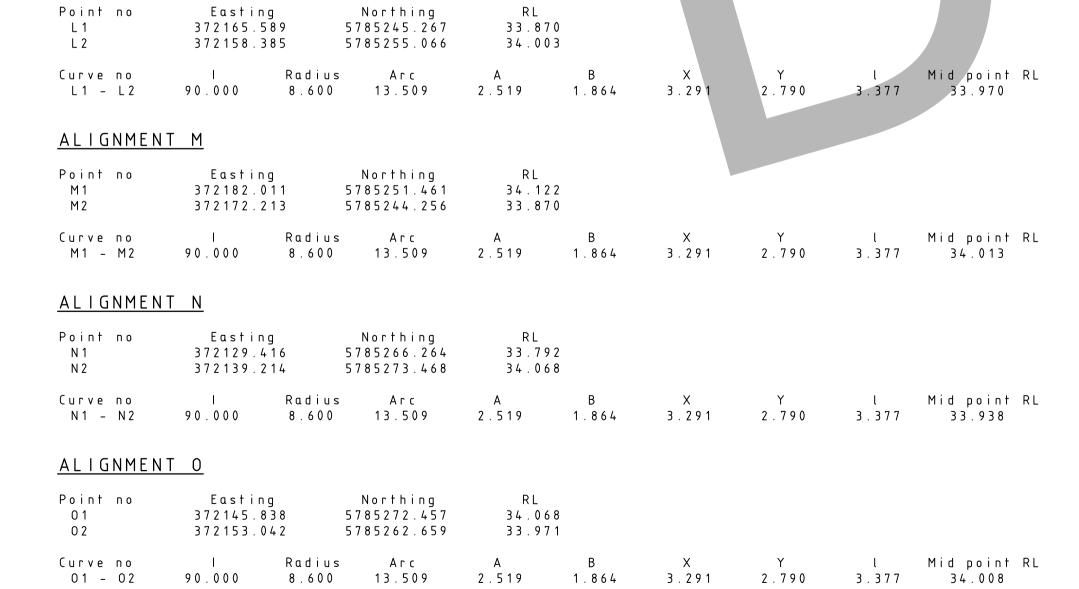
PP No. T220227

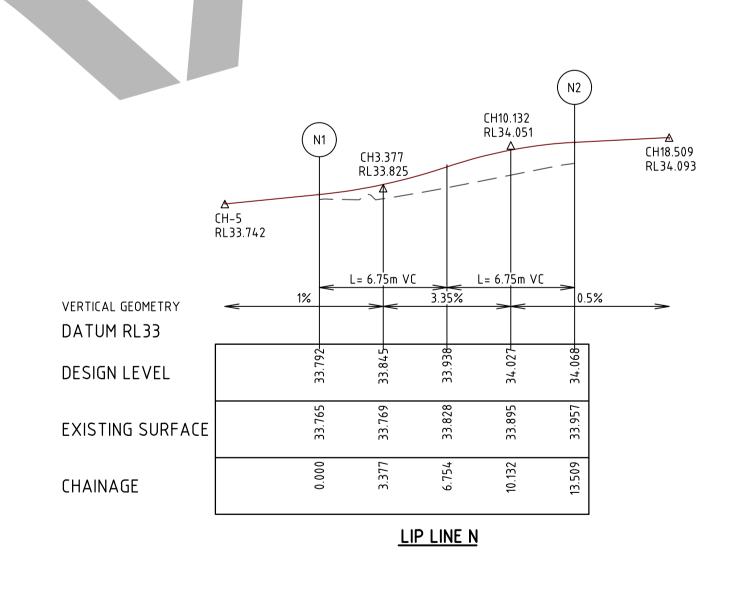

DRAWING No. 3086-01-301

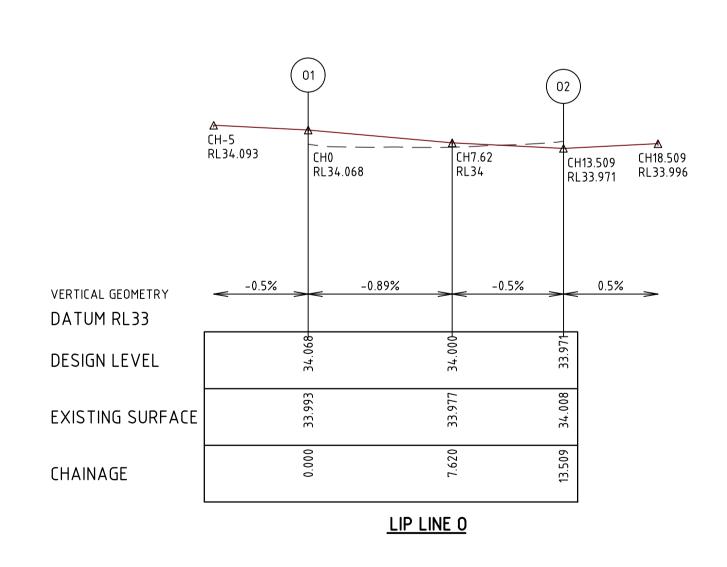
REVISION B




H 1:250 0 5 SCALE @ A1



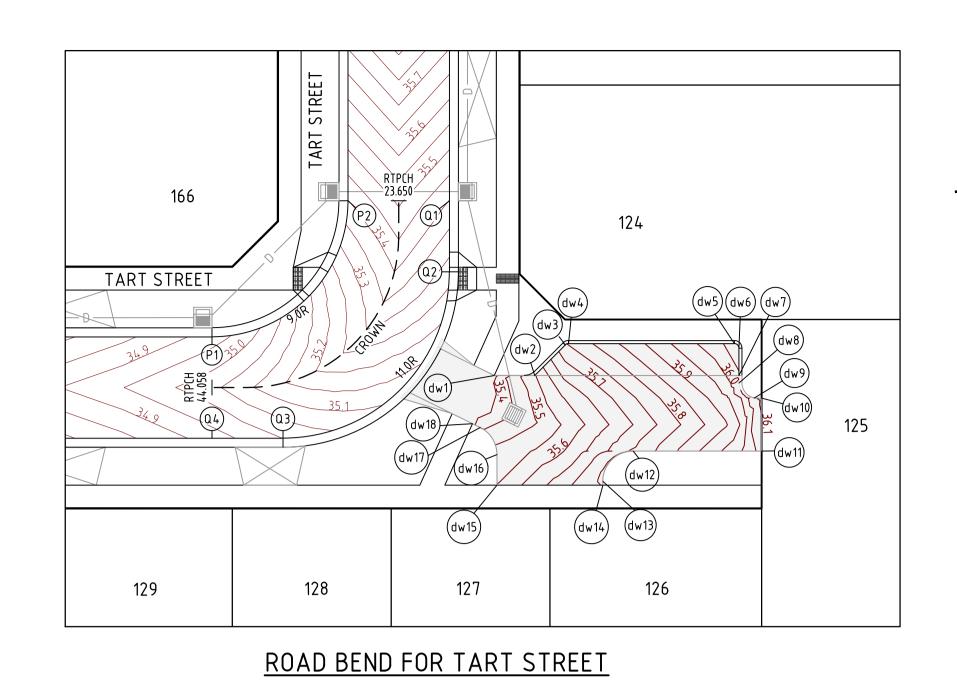



<u>EGEND</u>							
DESCRIPTION	EXISTING	PROPOSED					
TORMWATER DRAIN & PIT	———— ExD ————	D					
AVEMENT CONTOUR	— — — — — — —	52.00					

H 1:200	0	4	8	12 п
SCALE @ A1				
V 1:20	0	0.4	0.8	1.2n

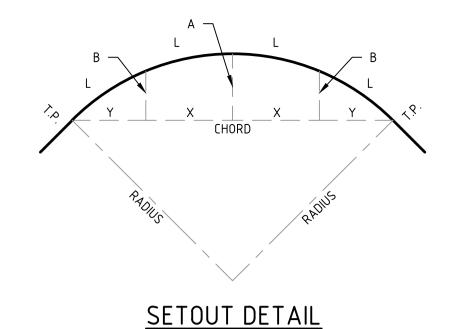
_165\	В	23.01.25	ΑТ	Master.	Low	ISSUED FOR COUNCIL SUBMISSION
6-01	Α	14.11.24	NT	MA	K. LORRIMAR	INITIAL ISSUE
3\308						
a\FS0						
S\dat						
C:\12d	REV	DATE	DRN	CKD	APP	AMENDMENT

<u>ALIGNMENT L</u>

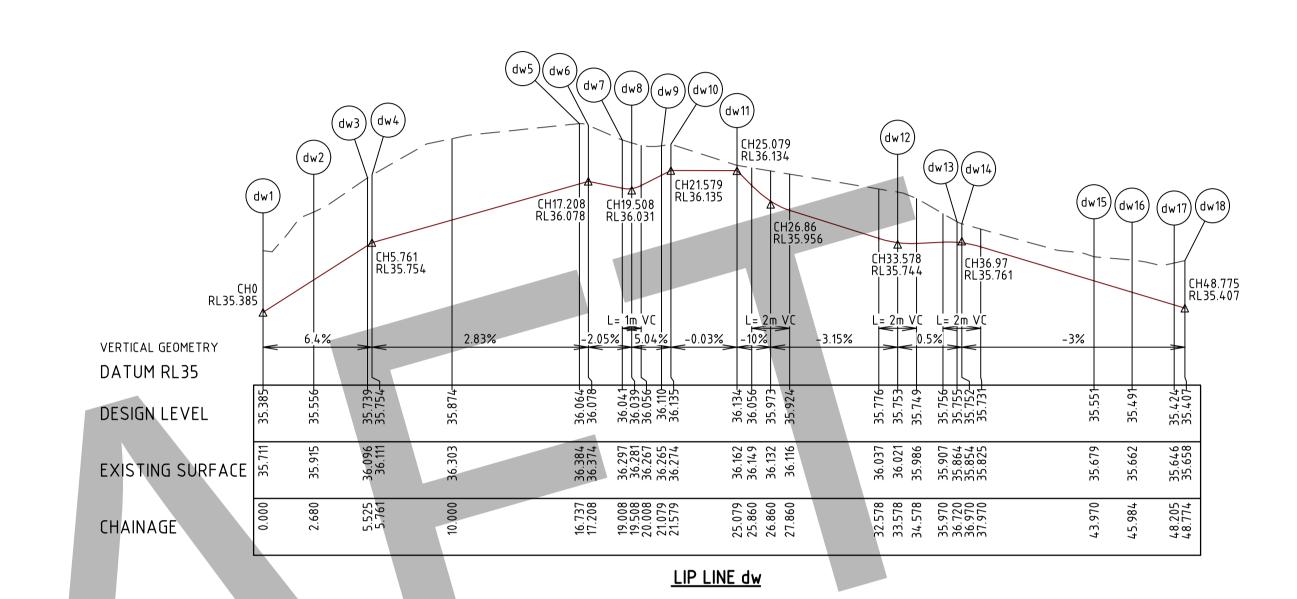

COPYRIGHT The concepts and information contained in this document are the Copyright of Cossill & Webley Consulting Engineers. Use or copying of the document in whole or part without the written permission of Cossill & Webley Consulting Engineers constitutes an infringement of copyright.
This plan is not to be used for construction

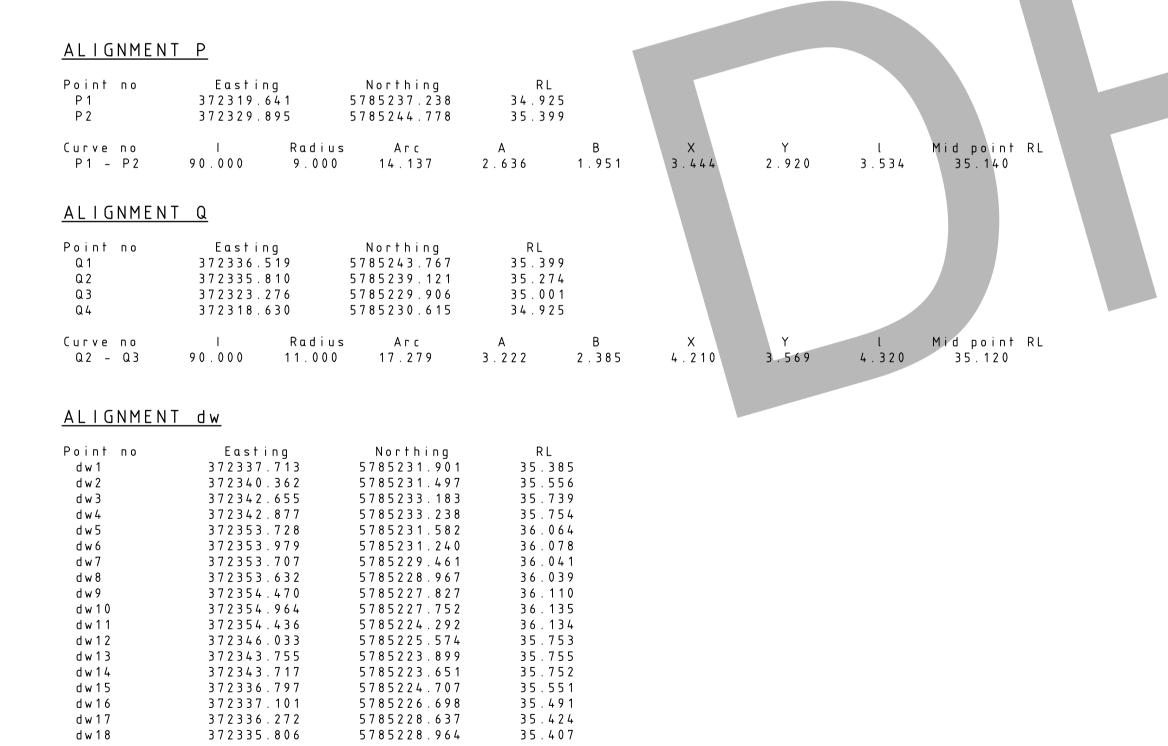
unless issued as revision 0 or higher

ed in ssill & copying ut the ley	COSSIL & Webley CONSULTING ENGINEERS Street Address Level 20, 390 St Kilda Road W cossillwebley.com.au


CONSULTING ENGINEERS	SIG GRO	UP
Street Address	APPROVED PE 0005927	DESIGNED
Level 20, 390 St Kilda Road W cossillwebley.com.au	11	W. SA
Melbourne VIC 3004 T (03) 8548 1560 E Melbourne.Reception@cosweb.com.au	Klorn	SCALE

		PROJECT KALA ESTATE -	STAGE 01		_
SIG G	ROUP	INTERSECTION	ON DETAILS		<
PE 0005927	DESIGNED W. SANSOM	(SHEET 3 OF CARDINIA SHIRE	•		ORIGINAL SIZE
KLov	SCALE AS SHOWN	PP No. T220227	DRAWING No. 3086-01-302	REVISION B	Ö




H 1:250 0 5 10 SCALE @ A1

<u>LEGEND</u>		
DESCRIPTION	EXISTING	PROPOSED
STORMWATER DRAIN & PIT	— — ExD — — —	D
PAVEMENT CONTOUR	— — — — — — — — — — — — — — — — — — —	52.00

35.424

35.407

0.023

0.088

0.293

0.586

0.300

0.017

0.065

0.217

0.434

0.224

0.059

0.115

0.383

0.765

0.548

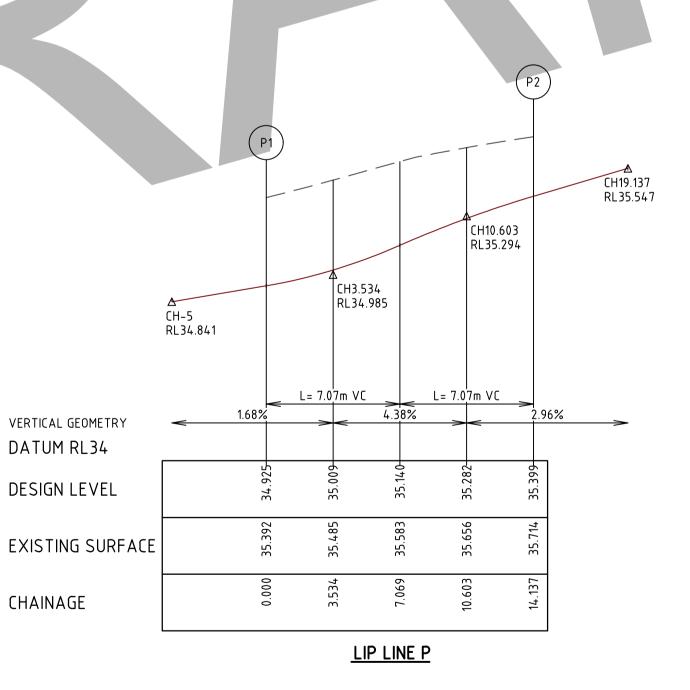
0.056

0.097

0.324

0.649

0.506


0.236

0.471

1 . 5 7 1

3.142

2 . 2 2 1

l Mid point RL

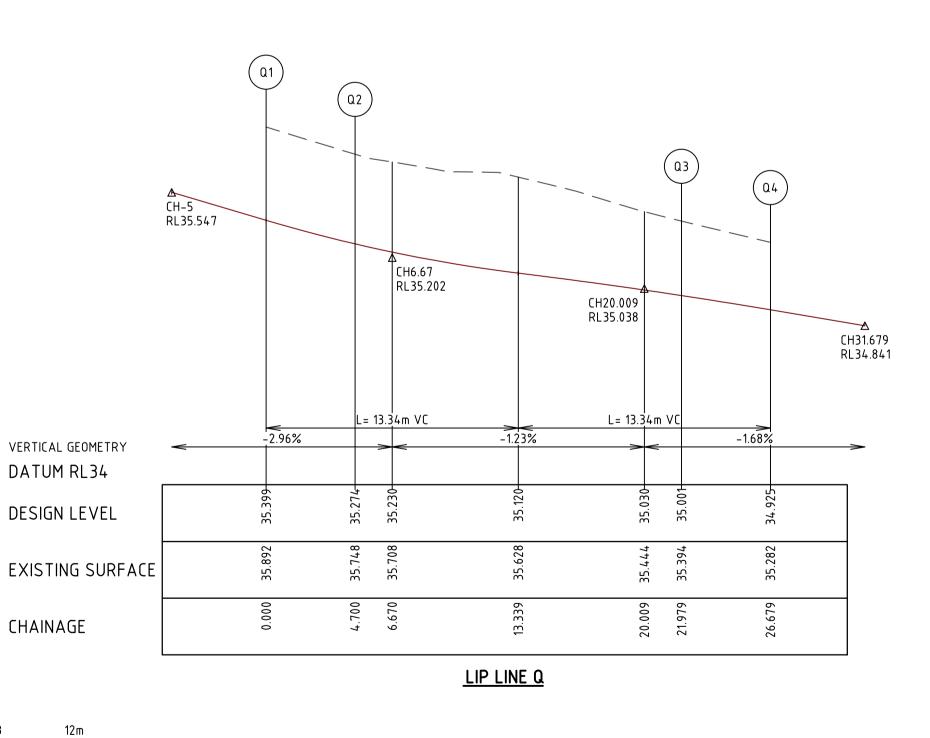
35.746

36.071

36.070

35.752

35.457


0.059

0.118

0.393

0.785

0.555

H 1:200	0	4	8
SCALE @ A1 V 1:20	0	0.4	0.8

ë						
	В	23.01.25	ΑТ	Maste	Lon	ISSUED FOR COUNCIL SUBMISSION
3086-01	Α	14.11.24	NT	MA	K. LORRIMAR	INITIAL ISSUE
\sim						
a\FS0						
\12dS\data						
:\12d	REV	DATE	DRN	CKD	APP	AMENDMENT

Radius

0.300

0.300

1.000

2.000

2.000

372336.272

372335.806

45.000

90.000

89.998

90.001

63.628

d w 17

d w 18

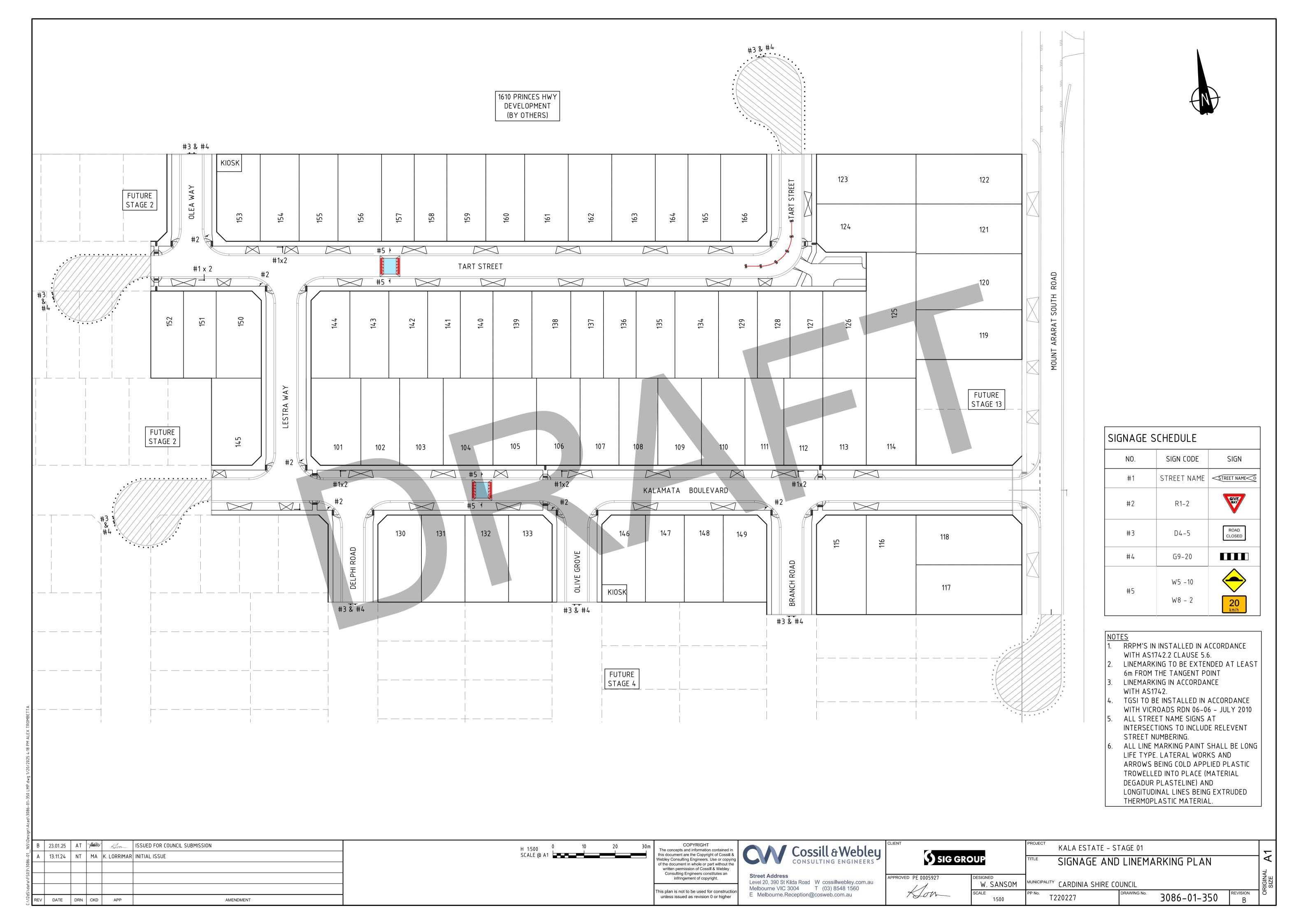
Curve no dw3 - dw4

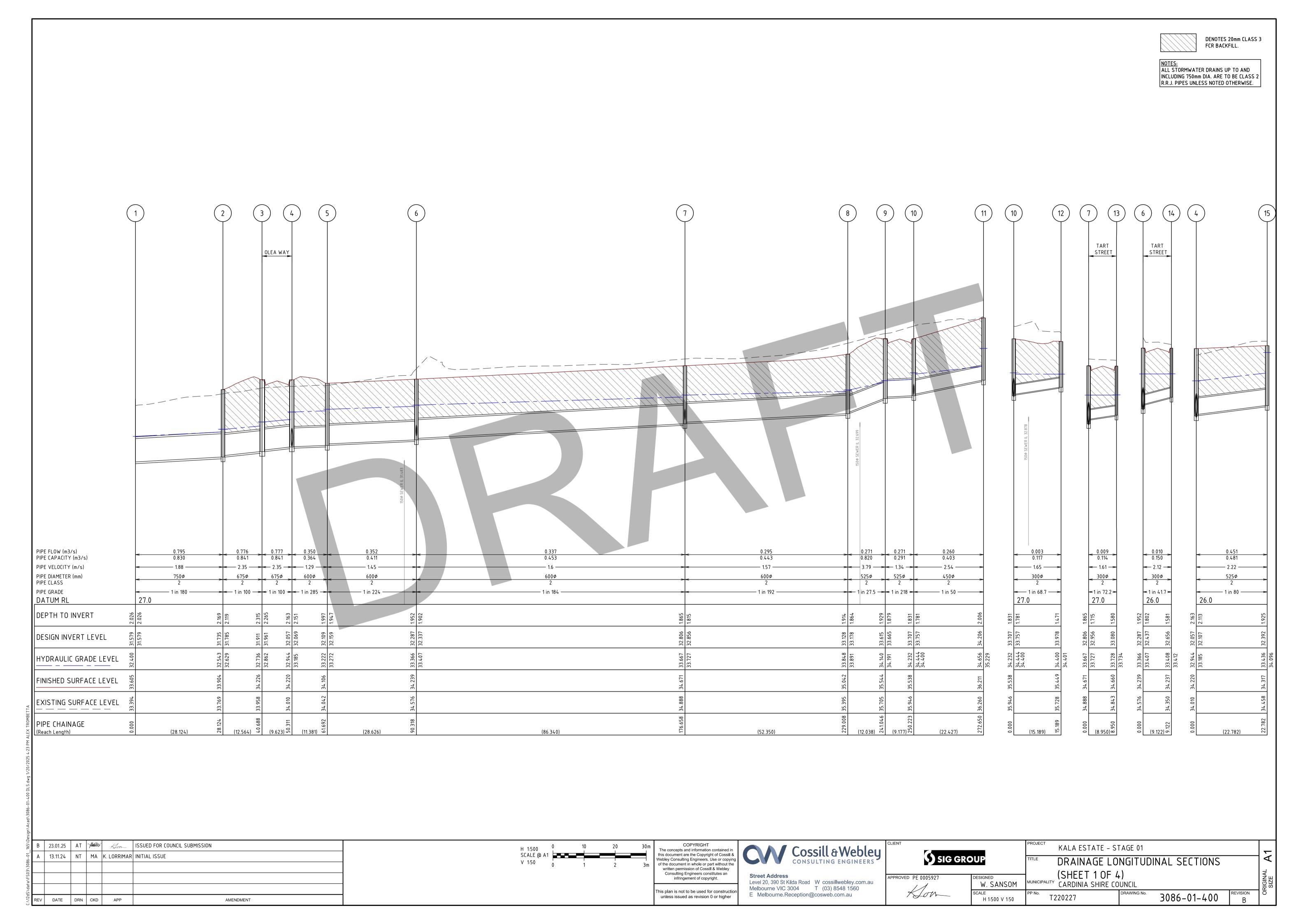
dw5 - dw6

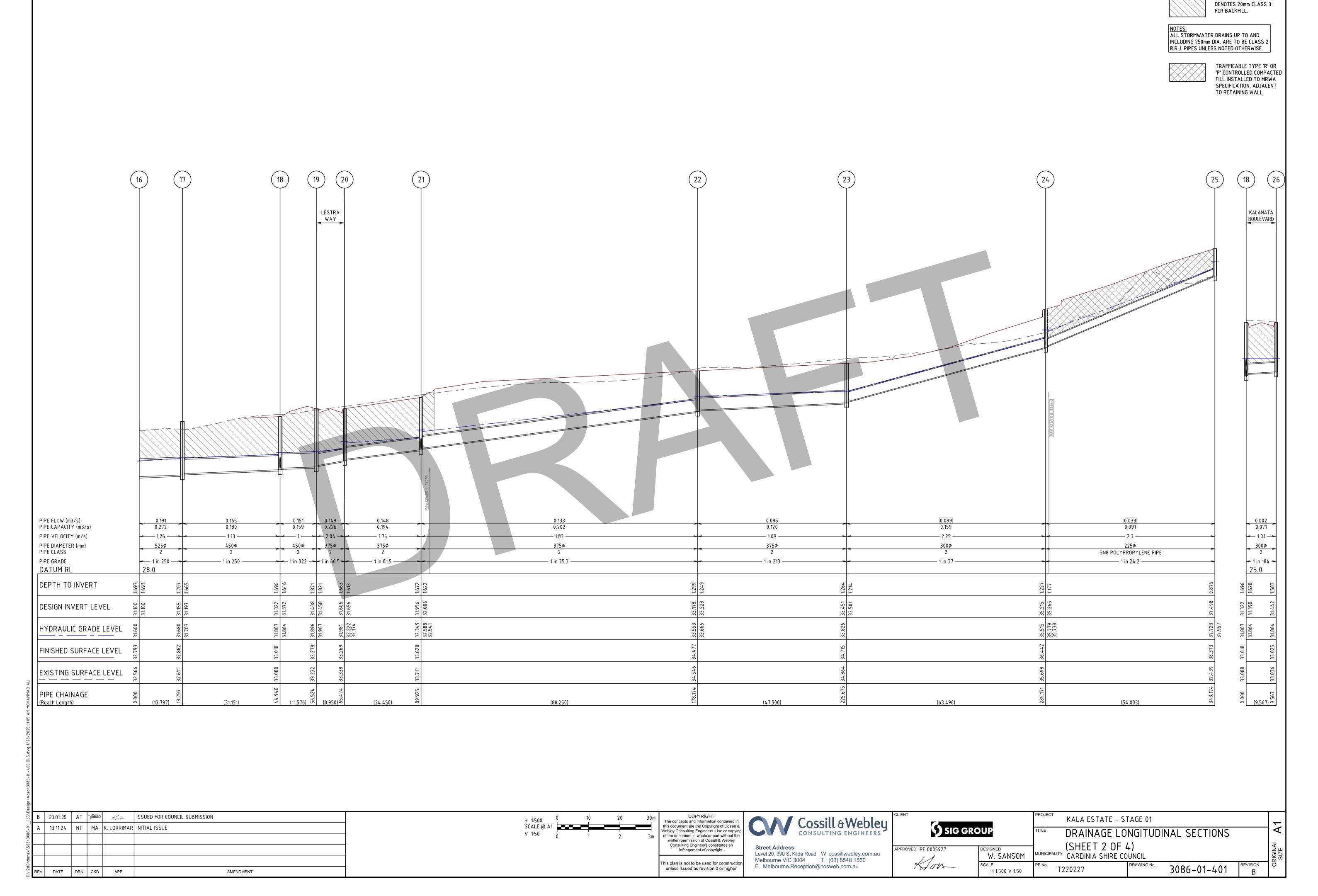
dw8 - dw9

dw12- dw13

dw 16 - dw 17


COPYRIGHT The concepts and information contained in this document are the Copyright of Cossill & Webley Consulting Engineers. Use or copying of the document in whole or part without the written permission of Cossill & Webley Consulting Engineers constitutes an infringement of copyright.
infringement of copyright.


unless issued as revision 0 or higher



E Melbourne.Reception@cosweb.com.au

		PROJECT KALA ESTATE - S	TAGE 01			
SIG G	ROUP	TITLE INTERSECTIO	N DETAILS]⋖	
OVED PE 0005927	DESIGNED W. SANSOM	(SHEET 4 OF CARDINIA SHIRE CO			RIGINAL SIZE	
KLov	SCALE AS SHOWN	PP No. T220227	DRAWING No. 3086-01-303	REVISION B		

COPYRIGHT
The concepts and information contained in this document are the Copyright of Cossill & Webley Consulting Engineers. Use or copying of the document in whole or part without the written permission of Cossill & Webley Consulting Engineers constitutes an infringement of copyright. B 23.01.25 AT How ISSUED FOR COUNCIL SUBMISSION KALA ESTATE - STAGE 01 CONSULTING ENGINEERS H 1:500 0 1
SCALE @ A1 $oldsymbol{igsig}$ sig group A 13.11.24 NT MA K. LORRIMAR INITIAL ISSUE DRAINAGE LONGITUDINAL SECTIONS (SHEET 3 OF 4)

MUNICIPALITY CARDINIA SHIRE COUNCIL Street Address
Level 20, 390 St Kilda Road W cossillwebley.com.au
Melbourne VIC 3004 T (03) 8548 1560 APPROVED PE 0005927 W. SANSOM Low This plan is not to be used for construction unless issued as revision 0 or higher E Melbourne.Reception@cosweb.com.au 3086-01-402 T220227 REV DATE DRN CKD APP H 1:500 V 1:50 AMENDMENT

21 27 LESTRA WAY	8 24 29 (30 31 (32 33 34 KALAMATA BOULEVARD		35		36		37 38 KALAMATA BOULEVARD
			150¢ SEWER II: 31						
PIPE FLOW (m3/s) 0.021 0.017 PIPE CAPACITY (m3/s) 0.071	0.009	0.453 0.859 0.946	0.425 0.442 = 0.423	0.420 0.428	><	0.404 0.414		0.383 0.442	0.001
PIPE VELOCITY (m/s) - 1.01	SN8 POLYPROPYLENE PIPE	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.51 ———————————————————————————————————	><	1.46 ————————————————————————————————————	-	2.78 ————————————————————————————————————	300¢ 2
PIPE GRADE 1 in 185 - 1 in 40.5 - 26.0	= 1 in 55.7 = 29.0	1 in 51.1 1 in 42.2 26.0	1 in 167 -> 1 in 167 ->	1 in 206 ———————————————————————————————————	><	1 in 220		1 in 41.6	→<1 in 99.4>
DEPTH TO INVERT 1.671 1.575 1.575 1.500 1.901	1.1227 1.190 0.740	1.812	1.624 1.549 1.723 1.678 1.678		1.635		1.787		1.679
DESIGN INVERT LEVEL 32.053 32.050 32.053 32.	35.215	30.656	31.450 31.450 31.516 31.570 31.570		31.976		32.290		33.756 33.806 33.896
32.545	33.080 35.515 35.779 35.742 35.763	31.393	32.038 32.100 32.158 32.208 32.433 32.433		32.732		33.103		34.206 34.649 34.649
FINISHED SURFACE LEVEL 33.628	36.442	32.570	33.239		33.611		34.077		35.485
EXISTING SURFACE LEVEL 111. 33.266	35.351	32.803	33.340		33.929		34.092		35.332
PIPE CHAINAGE 00 05 (8.500) 80 (27.750) 82.98	(9.997) 6	(6.996) (22.455)	75.4.51 88.7.04 89.7.04 76.007) (88.950)	(72.577)	121.986	(68.979)	190.965	(57.885)	248.850 266.88 257.800

DENOTES 20mm CLASS 3

TRAFFICABLE TYPE 'R' OR 'F' CONTROLLED COMPACTED

FILL INSTALLED TO MRWA SPECIFICATION, ADJACENT TO RETAINING WALL.

FCR BACKFILL.

NOTES:
ALL STORMWATER DRAINS UP TO AND INCLUDING 750mm DIA. ARE TO BE CLASS 2 R.R.J. PIPES UNLESS NOTED OTHERWISE.

COPYRIGHT

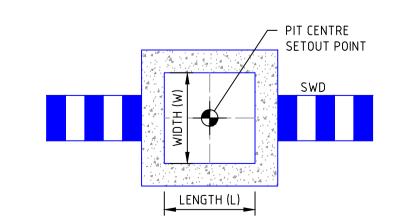
The concepts and information contained in this document are the Copyright of Cossill & Webley Consulting Engineers. Use or copying of the document in whole or part without the written permission of Cossill & Webley Consulting Engineers constitutes an infringement of copyright. B 23.01.25 AT How ISSUED FOR COUNCIL SUBMISSION KALA ESTATE - STAGE 01 H 1:500 0 10 SCALE @ A1 A 21.11.24 NT MA K. LORRIMAR INITIAL ISSUE $oldsymbol{oldsymbol{arphi}}$ sig group DRAINAGE LONGITUDINAL SECTIONS V 1:50 (SHEET 4 OF 4)

MUNICIPALITY CARDINIA SHIRE COUNCIL Street Address
Level 20, 390 St Kilda Road W cossillwebley.com.au
Melbourne VIC 3004 T (03) 8548 1560 APPROVED PE 0005927 W. SANSOM Don This plan is not to be used for construction unless issued as revision 0 or higher E Melbourne.Reception@cosweb.com.au 3086-01-403 T220227 REV DATE DRN CKD APP H 1:500 V 1:50 AMENDMENT

31	39 31 40 34	41 35 42 36 (43 (44) (45) (46)	47 48 49 50 51	50 52 53 54 55	54 56
	DELPHI ROAD	KALAMATA BOULEVARD BOULEVARI		OLIVE GROVE	BRANCH	
PIPE FLOW (m3/s) PIPE CAPACITY (m3/s) 0.027 0.074	0.004		0.044	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>0.013</u> 0.040 0.071 0.071	0.018 0.121
PIPE VELOCITY (m/s) PIPE DIAMETER (mm) PIPE CLASS PIPE GRADE DATUM DI	2 1 in 186 > 1 in		225¢ 30 SN8 POLYPROPYLENE PIPE 1 in 37 − 1 in	n 150 = 1 in 183 = 1 in 92.8 = 1 in 45.6 =	PYLENE PIPE 2 2 1 in 183 2 1	$\begin{array}{c} $
DATUM RL 25.0 DEPTH TO INVERT	1.678 1.678 1.678 1.678 2.00 2.	26.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 57.0 56.0	27.0 25.0 27.0 899.1 899.1 899.1	1.007 1.006 1.006 1.006 1.006 1.005 1.025 1.025	1.075 1.073 1.659 1.659 1.659 1.659 1.674 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	26.0 8991 8191 81618 81619
DESIGN INVERT LEVEL 60.00000000000000000000000000000000000	30.793 1. 30.938 1. 30.986 1. 31.570 1.	31.922 1. 32.072 1. 32.120 1. 32.290 1.	33.183 0 33.184 0 33.184 0 33.711 0 31.102 1.	31.242 1. 31.242 1. 31.290 1. 32.134 1. 32.134 1. 32.177 1. 32.227 1.	32.239 1. 32.239 1. 31.484 1. 31.546 1. 31.560 1.	31.566 1.
HYDRAULIC GRADE LEVEL & ST. ST.	32.417 3; 32.567 31.393 3(31.459 3(31.451 31.461 32.208 3; 32.433 3; 32.433 3;		33.140 33.140 33.936 34.207 31.600 3	31.685 31.685 31.685 31.685 32.434 32.477 32.591 32.591 32.759 32.797	32.477 3; 32.602 3; 32.598 3; 32.500 3; 32.522 3; 32.522 3; 32.586 3; 32.586 3;	
FINISHED SURFACE LEVEL 25	2.962 3 3.2570 3 3.248 3 3.3248 3	33.134 33 33.611 33 33.600 33 34.077 33	33.628 33.34.515 33.32.770 33.32.770 33.33.33.33.33.33.33.33.33.33.33.33.33.	32.866 33 33.252 33 33.358 33 33.358 33	33.252 33 33.181 33 33.182 33 33.182 33 33.182 33	3.904
EXISTING SURFACE LEVEL 8	32.906 33 32.803 33 32.833 33 33.500 33	33.929 33.93.94.092 34.002 34.0	33.428 33	12.929 3. 12.951 3. 12.928 3. 12.956 3.	32.928 33 32.923 33 33.030 33 33.058 33	3.030 3
PIPE CHAINAGE (Reach Length) (44.450)	8 00	950	000	000 000 000 000 000 000 000 000 000 00	0000 (9.000)6 (5.998)2 (8.800)17 E (5.998)2 (8.800)17	000.0 (18.600) 81

DENOTES 20mm CLASS 3
FCR BACKFILL.

NOTES:
ALL STORMWATER DRAINS UP TO AND
INCLUDING 750mm DIA. ARE TO BE CLASS 2
R.R.J. PIPES UNLESS NOTED OTHERWISE.


	SCHEDULE											
PIT NAME	TYPE	EASTING	NORTHING	INTERNAL WIDTH	INTERNAL LENGTH	INLET DIA	INLET IL	OUTLET DIA	OUTLET IL	PIT SETOUT RL	PIT DEPTH	REMARKS
1	ENDWALL	372099.488	5785271.968			750	31.579			33.605	2.026	
2	SIDE ENTRY PIT GRATED	372127.334	5785268.023	900	1350	675	31.785	750	31.735	33.904	2.169	
3	SIDE ENTRY PIT GRATED	372137.835	5785274.369	1500	1050	675	31.961	675	31.911	34.226	2.315	
4	SIDE ENTRY PIT GRATED	372147.345	5785272.898	1350	1050	600	32.069	675	32.057	34.22	2.163	
						525	32.107					
5	SIDE ENTRY PIT GRATED	372153.852	5785263.910	1200	900	600	32.159	600	32.109	34.106	1.997	
6	SIDE ENTRY PIT GRATED	372182.125	5785259.435	900	900	600	32.337	600	32.287	34.239	1.952	
						300	32.437					
7	SIDE ENTRY PIT GRATED	372267.478	5785246.412	900	900	600	32.856	600	32.806	34.671	1.865	
						300	32.956					
8	SIDE ENTRY PIT GRATED	372319.239	5785238.588	1050	900	525	33.178	600	33.128	35.042	1.914	
9	SIDE ENTRY PIT GRATED	372328.725	5785245.563	1050	900	525	33.665	525	33.615	35.544	1.929	
10	SIDE ENTRY PIT GRATED	372337.799	5785244.192	900	900	450	33.757	525	33.707	35.538	1.831	
						300	33.757					
11	JUNCTION PIT	372341.187	5785266.362	900	900			450	34.206	36.211	2.006	
12	GRATED PIT	372338.610	5785229.135	900	900			300	33.978	35.449	1.471	CONSTRUCT GRATED PIT BIKE SAFE, HEAVY DUTY & V-SHAPED GRATE.
13	SIDE ENTRY PIT GRATED	372266.123	5785237.565	600	900			300	33.080	34.660	1.580	
14	SIDE ENTRY PIT GRATED	372182.446	5785250.332	600	900			300	32.656	34.237	1.581	
15	JUNCTION PIT	372150.569	5785295.451	900	900			525	32.392	34.317	1.925	
16	ENDWALL	372103.690	5785198.569			525	31.100			32.793	1.693	
17	SIDE ENTRY PIT GRATED	372117.330	5785196.488	900	900	450	31.197	525	31.155	32.862	1.707	
18	SIDE ENTRY PIT GRATED	372148.124	5785191.790	900	900	450	31.372	450	31.322	33.018	1.696	
						300	31.390					
19	SIDE ENTRY PIT GRATED	372157.238	5785198.492	900	900	375	31.458	450	31.408	33.279	1.871	
20	SIDE ENTRY PIT GRATED	372166.086	5785197.142	600	900	375	31.656	375	31.606	33.269	1.663	
21	SIDE ENTRY PIT GRATED	372169.774	5785221.312	600	900	375	32.006	375	31.956	33.628	1.672	
						300	32.007		\			
22	JUNCTION PIT	372256.866	5785208.023	600	900	375	33.228	375	33.178	34.477	1.299	
23	JUNCTION PIT	372303.822	5785200.858	600	900	300	33.501	375	33.451	34.715	1.264	
24	JUNCTION PIT	372366.591	5785191.277	600	900	225	35.265	300	35.215	36.442	1.227	
						225	35.253					
25	JUNCTION PIT	372374.741	5785244.662	600	900			225	37.498	38.373	0.875	
26	SIDE ENTRY PIT GRATED	372149.987	5785182.456	600	900			300	31.442	33.025	1.583	
27	SIDE ENTRY PIT GRATED	372161.075	5785222.639	600	900	225	32.103	300	32.053	33.628	1.575	
28	JUNCTION PIT	372133.790	5785226.802	600	900			225	32.788	33.689	0.901	
29	JUNCTION PIT	372365.087	5785181.394	600	900			225	35.432	36.172	0.740	
30	ENDWALL	372179.261	5785139.954			600	30.656			32.468	1.812	
31	SIDE ENTRY PIT GRATED	372180.316	5785146.870	900	900	600	30.843	600	30.793	32.570	1.777	
						225	30.980					
20	ILINICTION DIT	272401 417	E70E460.00F	1000	000	300	30.938	600	24 275	22.000	1.07	
32	JUNCTION PIT	372184.146	5785168.995	1800	900	(2x)450	31.450	600	31.375	32.999	1.624	
33	SIDE ENTRY PIT GRATED	372192.395	5785175.982	600	1800	(2x)450	31.516	(2x)450	31.516	33.239	1.723	
34	SIDE ENTRY PIT GRATED	372193.620	5785184.849	900	1500	600	31.570	(2x)450	31.570	33.248	1.678	

PIT S	SCHEDULE											
PIT NAME	TYPE	EASTING	NORTHING	INTERNAL WIDTH	INTERNAL LENGTH	INLET DIA	INLET IL	OUTLET DIA	OUTLET IL	PIT SETOUT RL	PIT DEPTH	REMARKS
35	SIDE ENTRY PIT GRATED	372265.367	5785173.900	900	900	600	31.976	600	31.922	33.611	1.689	
						300	32.072					
36	SIDE ENTRY PIT GRATED	372333.556	5785163.491	900	900	450	32.365	600	32.290	34.077	1.787	
						300	32.440					
37	SIDE ENTRY PIT GRATED	372390.779	5785154.764	900	900	300	33.806	450	33.756	35.485	1.729	
38	SIDE ENTRY PIT GRATED	372389.429	5785145.917	600	900			300	33.896	35.473	1.577	
39	JUNCTION PIT	372224.257	5785140.165	600	900			225	32.192	32.962	0.769	
40	SIDE ENTRY PIT GRATED	372171.468	5785148.220	600	900			300	30.986	32.562	1.576	
41	SIDE ENTRY PIT GRATED	372172.915	5785187.854	600	900			300	31.757	33.134	1.378	
42	SIDE ENTRY PIT GRATED	372264.016	5785165.053	600	900			300	32.120	33.600	1.480	
43	SIDE ENTRY PIT GRATED	372332.227	5785154.645	600	900			300	32.586	34.061	1.475	
44	ENDWALL	372354.227	5785110.218			225	33.184			33.628	0.444	
45	JUNCTION PIT	372357.169	5785129.495	600	900			225	33.711	34.515	0.804	
46	ENDWALL	372250.288	5785129.112			300	31.102			32.770	1.668	
47	SIDE ENTRY PIT GRATED	372251.344	5785136.032	600	900	300	31.242	300	31.149	32.866	1.717	
48	SIDE ENTRY PIT GRATED	372242.644	5785137.360	600	900			300	31.290	32.866	1.576	
49	ENDWALL	372278.025	5785127.915			300	32.134			33.140	1.006	
50	JUNCTION PIT	372278.628	5785131.869	600	900	225	32.227	300	32.177	33.252	1.075	
						225	32.239					
51	JUNCTION PIT	372292.468	5785129.757	600	900			225	32.534	33.358	0.824	
52	JUNCTION PIT	372269.731	5785133.227	600	900			225	32.309	33.181	0.872	
53	ENDWALL	372318.046	5785115.741			300	31.484			33.142	1.659	
54	SIDE ENTRY PIT GRATED	372318.951	5785121.670	600	900	300	31.560	300	31.516	33.184	1.668	
						225	31.566					
55	SIDE ENTRY PIT GRATED	372310.252	5785122.998	600	900			300	31.608	33.182	1.574	
56	JUNCTION PIT	372337.338	5785118.865	600	900			225	32.926	33.904	0.978	

NOTES:

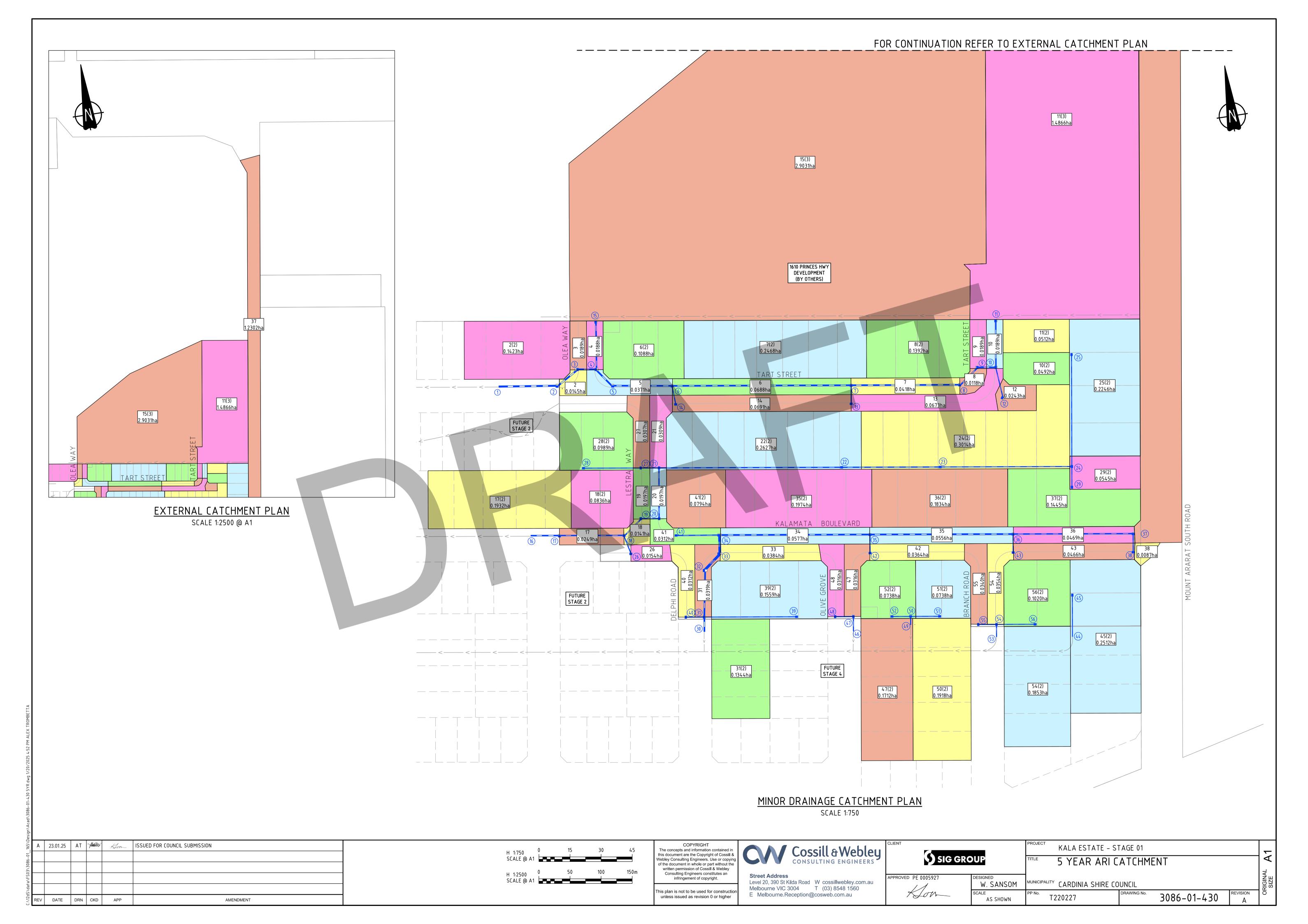
1. ALL PITS ARE TO BE TO VPA STANDARDS UNLESS NOTED OTHERWISE.

- 2. PITS DEEPER THAN 1.00m SHALL BE FITTED WITH STEPIRONS, FIRST STEPIRON TO BE 300mm FROM THE BOTTOM OF THE PIT.
- 3. COVER LEVELS TO BE SET TO MATCH THE FINISHED SURFACE PROFILES AND ADJACENT CONSTRUCTION.
- 4. UNLESS OTHERWISE SPECIFIED, PIT TYPES REFER TO VICTORIAN PLANNING AUTHORITY STANDARD DRAWINGS FIGURE EDCM 601 SIDE ENTRY PIT GRATED B2 KERB AND CHANNEL
 - FIGURE EDCM 602 DOUBLE SIDE ENTRY PIT GRATED B2 KERB AND CHANNEL
 - FIGURE EDCM 603 SIDE ENTRY PIT GRATED SM2 KERB AND CHANNEL
- FIGURE EDCM 605 JUNCTION PIT 5. FOR HAUNCHED PITS REFER VPA STANDARD DRAWING FIGURE EDCM 607 & EDCM 608. PITS TO BE HAUNCHED TO COUNCIL STANDARD OPENINGS.
- 6. STUBS AND PIPE ENDS TO BE BLOCKED OFF TO COUNCIL'S SATISFACTION.
- 7. ALL GRATED PITS TO HAVE BICYCLE SAFE LOCKDOWN GRATES. 8. ALL GRATED SIDE-ENTRY PITS TO HAVE MIN 100mm THICK CONCRETE APRON BETWEEN GRATE AND ASPHALT. REFER VPA STANDARD DRAWINGS.
- 9. PIT LIDS TO BE IN ACCORDANCE WITH VPA STANDARD DRAWING EDCM 605. 10. PITS WITHIN ROAD PAVEMENT, VEHICLE CROSSINGS OR WITHIN 0.75m OF A VEHICLE CROSSING, TO HAVE CLASS D CAST IRON LOCK DOWN LIDS.
- 11. ALL PITS WITHIN ROAD TO BE CONSTRUCTED WITH 32 MPa CONCRETE WITH SL92 MESH IN WALLS AND BASE.
- 12. CONTRACTOR TO VERIFY EXISTING SERVICES CONNECTION LEVELS PRIOR TO CONSTRUCTION. ANY DISCREPANCIES MUST BE IMMEDIATELY IDENTIFIED AND THE SUPERINTENDENT NOTIFIED PRIOR TO CONSTRUCTION COMMENCING.
- 13. REFER TO RELEVANT AUTHORITY STANDARDS FOR PIT INTERFACE WITH KERB & CHANNEL.

TYPICAL DRAINAGE PIT SETOUT DETAIL

HAUNCH		- PIT CENTRE SETOUT POINT
	WIDTH (W)	Ш
SWD		SWD
PIT LID —	LENGTH (L)	

TYPICAL HAUNCH PIT SETOUT DETAIL


De						
_ _ _ _ _ _	В	23.01.25	АТ	Macine	Lon	ISSUED FOR COUNCIL SUBMISSION
6-01	Α	13.11.24	NT	MA	K. LORRIMAR	INITIAL ISSUE
3/3086						
a\FS0						
\dat						
\12dS	REV	DATE	DRN	CKD	APP	AMENDMENT

COPYRIGHT	ı
The concepts and information contained in	ı
this document are the Copyright of Cossill &	ı
Webley Consulting Engineers. Use or copying of the document in whole or part without the written permission of Cossill & Webley Consulting Engineers constitutes an infringement of copyright.	
This plan is not to be used for construction unless issued as revision 0 or higher	

,	CVV	Cossill & Webley
	Street Address	ilda Daad IIV. aaasillaabkaa saas ay

O G G G G G G G G G G G G G G G G G G G	DETTING ENGINEERS
Street Address	
Level 20, 390 St Kilda Road	W cossillwebley.com.au
Melbourne VIC 3004	T (03) 8548 1560
E Melbourne.Reception@	cosweb.com.au

NT C		PROJECT KALA ESTATE -	STAGE 01			1
SIG (ROUP	TITLE DRAINAGE P	IT SCHEE	DULE		
ROVED PE 0005927	DESIGNED W. SANSOM	MUNICIPALITY CARDINIA SHIRE	COUNCIL			RIGINAL
Klow	SCALE AS SHOWN	PP No. T220227	DRAWING No.	3086-01-420	REVISION R	76

KALA ESTATE - STAGE 01

MINOR DRAINAGE COMPUTATIONS

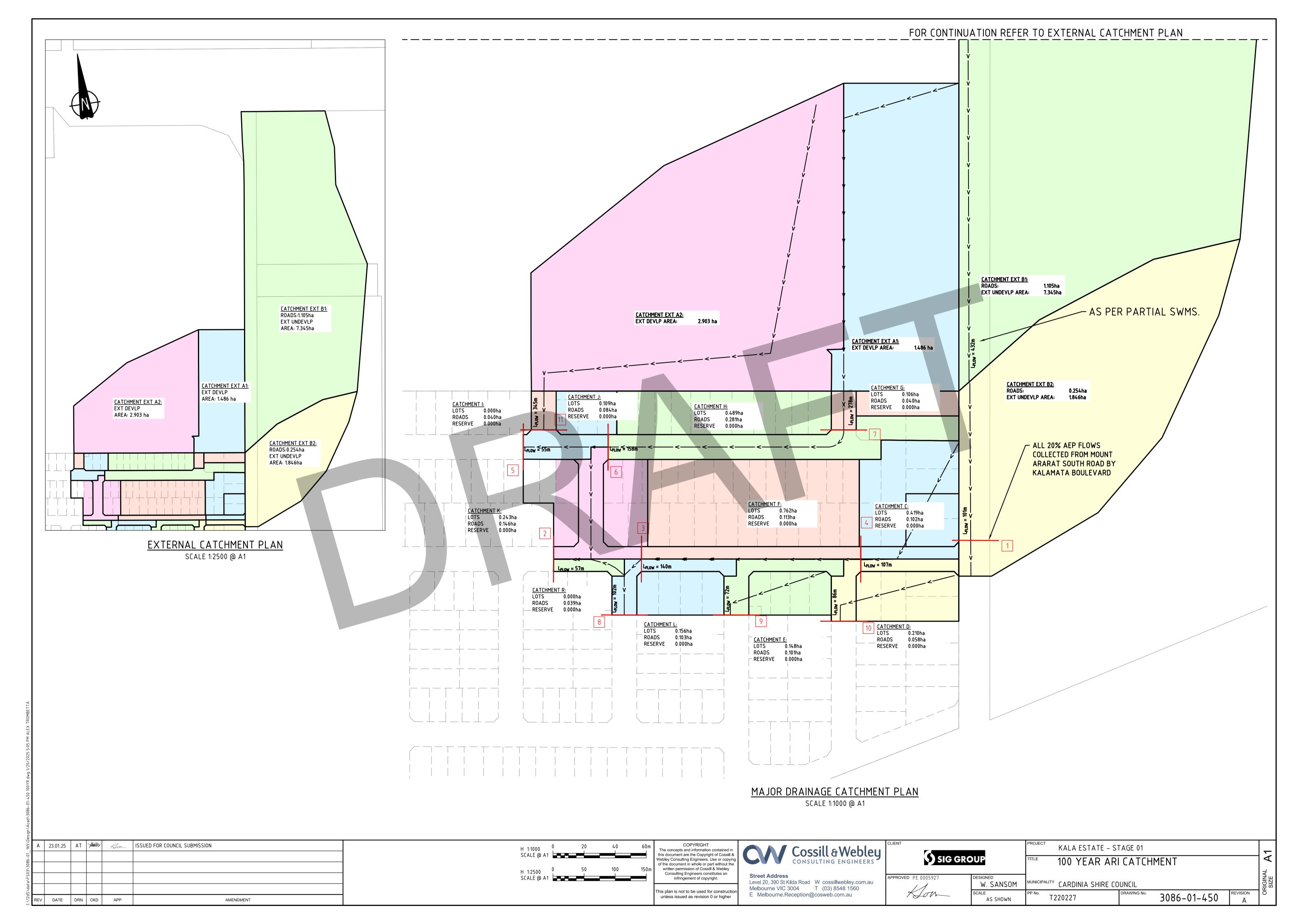
AEP 20% **DESIGNED BY** M. ALI DATE 20/01/2025

					CATC	HMENT				Pipe	Pipe	Pipe	Tc	Intensity	Pipe	Pipe	Pipe		Pit	Pipe	HGL	Pipe	
Pit	D/S	Area 1	CofR1	Area 2	CofR2	Area 3	CofR3	Ae	Sum Ae	Size	Length	Grade	10	Птестысу	Flow	Velocity	Capacity	Q/Qf	K	Vel Head	Grade	Total Loss	Freeboard
Number	Structure	(ha)		(ha)		(ha)		(ha)	(ha)	(mm)	(m)	(1 in)	(min)	(mm/hr)	(l/s)	(m/s)	(I/s)	-4		(m)	(1in)	(m)	(m)
2	1	0.0140	0.56	0.142	0.71	, ,		0.1090	3.8480	750	28.124	180.2	7.87	74.06	795.20	1.88	829.70	0.96	0.52	0.1650	196.2	0.143	1.276
3	2	0.0190	0.56					0.0110	3.7400	675	12.564	100.0	7.78	74.45	775.90	2.35	840.90	0.92	0.53	0.2400	117.5	0.107	1.364
4	3	0.0190	0.56					0.0100	3.7290	675	9.623	100.0	7.72	74.75	776.80	2.35	840.90	0.92	1.00	0.2400	117.2	0.082	1.035
5	4	0.0370	0.56					0.0210	1.6690	600	11.381	284.5	7.57	75.40	349.60	1.29	364.20	0.96	0.64	0.0780	308.7	0.037	0.834
6	5	0.0690	0.56	0.109	0.71			0.1150	1.6490	600	28.626	223.6	7.24	76.84	351.90	1.45	410.80	0.86	0.52	0.0790	304.7	0.094	0.833
7	6	0.0420	0.56	0.247	0.71			0.1980	1.4950	600	86.340	184.1	6.34	81.19	337.20	1.60	452.70	0.74	0.84	0.0730	331.9	0.260	0.943
8	7	0.0120	0.56	0.139	0.71			0.1050	1.2600	600	52.350	192.5	5.78	84.20	294.70	1.57	442.80	0.67	0.78	0.0550	434.6	0.120	1.151
9	8	0.0190	0.56					0.0110	1.1550	525	12.038	27.5	5.73	84.51	271.20	3.79	819.70	0.33	0.63	0.0800	48.4	0.249	1.353
10	9	0.0190	0.56	0.049	0.71	4.40	0.74	0.0450	1.1440	525	9.177	218.5	5.62	85.20	270.80	1.34	291.10	0.93	2.10	0.0800	222.7	0.041	1.094
11	10	0.0240	0.50	0.051	0.71	1.49	0.71	1.0860	1.0860	450	22.427	50.0	5.47	86.08	259.60	2.54	403.40	0.64	4.22	0.1360	87.8	0.255	0.982
12	10	0.0240	0.56					0.0140	0.0140	300	15.189	68.7	5.00	88.90	3.30	1.65	116.70	0.03	9.70	0.0010	83534.6	0.001	1.047
13	6	0.0670 0.0690	0.56 0.56					0.0370 0.0380	0.0370	300	8.950	72.2 41.7	5.00 5.00	88.90	9.30 9.50	1.61 2.12	113.90	0.08	6.25 4.86	0.0010	10926.8	0.001 0.001	0.927 0.825
14	4	0.0690	0.50			2.90	0.71	2.0500	0.0380 2.0500	300 525	9.122 22.782	80.0	6.72	88.90 79.30	451.50	2.12	149.90 481.00	0.06 0.94	2.98	0.0010 0.2220	10365.2 90.8	0.001	0.823
15	16	0.0250	0.56	0.193	0.71	2.30	0.71	0.1500	0.9470	525	13.797	250.0	8.35	72.17	191.10	1.26	272.10	0.70	0.57	0.0400	172.1	0.231	1.159
18	17	0.0140	0.56	0.084	0.71			0.0670	0.7970	450	31.151	250.0	7.89	73.98	164.80	1.13	180.40	0.91	1.05	0.0550	299.7	0.104	1.154
19	18	0.0200	0.56	0.001	0.71			0.0110	0.7210	450	11.576	321.5	7.70	74.83	150.60	1.00	159.10	0.95	0.24	0.0460	358.8	0.032	1.372
20	19	0.0200	0.56					0.0110	0.7100	375	8.950	60.5	7.63	75.15	148.90	2.04	225.60	0.66	2.08	0.0930	121.7	0.074	1.047
21	20	0.0310	0.56					0.0170	0.6990	375	24.450	81.5	7.39	76.17	148.50	1.76	194.30	0.76	2.08	0.0920	139.5	0.175	1.040
22	21			0.263	0.71			0.1860	0.5950	375	88.250	75.3	6.59	79.95	132.50	1.83	202.10	0.66	1.53	0.0730	87.2	1.012	0.811
23	22							0.0000	0.4100	375	47.500	213.0	5.86	83.73	95.30	1.09	120.20	0.79	0.00	0.0380	296.3	0.160	0.889
24	23			0.301	0.71			0.2130	0.4100	300	63.496	37.0	5.39	86.55	98.50	2.25	158.90	0.62	2.25	0.0990	37.6	1.689	0.663
25	24			0.225	0.71			0.1590	0.1590	225	54.003	24.2	5.00	88.90	39.20	2.30	91.30	0.43	4.72	0.0490	27.2	1.985	0.417
26	18	0.0150	0.56					0.0090	0.0090	300	9.567	184.0	5.00	88.90	2.10	1.01	71.30	0.03	9.70	0.0010	207874.1	0.001	1.160
27	21	0.0310	0.56					0.0170	0.0870	300	8.500	184.8	5.26	87.34	21.10	1.01	71.20	0.30	0.01	0.0050	2103.6	0.004	1.083
28	27			0.099	0.71			0.0700	0.0700	225	27.750	40.5	5.00	88.90	17.30	1.78	70.60	0.24	7.00	0.0100	59.3	0.468	0.609
29	24			0.054	0.71			0.0380	0.0380	225	9.997	55.7	5.00	88.90	9.50	1.51	60.20	0.16	7.00	0.0030	2237.6	0.004	0.410
31	30	0.0320	0.56	0.134	0.71			0.1130	3.4250	600	6.996	51.1	18.98	47.63	453.10	3.04	859.40	0.53	0.50	0.1310	51.1	0.137	1.111
32	31	0.0200	0.50				_	0.0000	3.1850	600	22.455	42.2	18.87	47.81	422,90	3.34	945.50	0.45	0.56	0.1140	43.5	0.516	0.960
33	32	0.0380	0.56					0.0210	3.1850	450	11.007	166.7	18.74	48.02	424.80	1.39	441.90	0.96	0.64	0.0910	180.3	0.061	1.081
34 35	33 34	0.0580 0.0560	0.56	0.197	0.71		_	0.0320 0.1700	3.1630 3.0580	450 600	8.950 72.577	166.7 206.0	18.63 17.83	48.19 49.47	423.40 420.20	1.39 1.51	441.90 427.90	0.96 0.98	2.05 0.64	0.0900 0.1130	181.5 213.7	0.049 0.340	0.815 0.807
36	35	0.0300	0.56	0.197	0.71	-		0.1560	2.8670	600	68.979	220.0	17.05	50.72	404.00	1.46	414.10	0.98	0.32	0.1130	231.2	0.340	0.807
37	36	1.2300	0.56	0.145	0.71	_		2.6810	2.6860	450	57.885	41.6	16.70	51.28	382.50	2.78	442.20	0.38	1.50	0.2950	54.1	1.070	0.836
38	37	0.0090	0.56	0.113	0.71			0.0050	0.0050	300	8.950	99.4	5.00	88.90	1.20	1.37	97.00	0.01	4.88	0.0010	646830.7	0.001	0.824
31	30	0.0320	0.56	0.134	0.71			0.1130	0.000		0.000	5511	3,00	33.33	2,20	2.07	57100	3,32	0.50	0,0020	01000017	0,001	1.111
39	31			0.156	0.71			0.1100	0.1100	225	44.450	36.7	5.00	88.90	27.20	1.87	74.20	0.37	6.27	0.0240	46.4	0.959	0.395
31	30	0.0320	0.56	0.134	0.71			0.1130											0.50				1.111
40	31	0.0310	0.56					0.0170	0.0170	300	8.950	186.5	5.00	88.90	4.30	1.00	70.80	0.06	9.26	0.0010	50664.2	0.001	1.102
34	33	0.0580	0.56					0.0320											2.05				0.815
41	34	0.0310	0.56	0.079	0.71			0.0730	0.0730	300	20.923	187.2	5.00	88.90	18.10	1.00	70.70	0.26	4.39	0.0030	2850.6	0.007	0.720
35	34	0.0560	0.56	0.197	0.71			0.1700											0.64				0.807
42	35	0.0360	0.56					0.0200	0.0200	300	8.950	186.4	5.00	88.90	5.00	1.00	70.80	0.07	5.80	0.0010	37383.3	0.001	0.794
36	35	0.0470	0.56	0.183	0.71			0.1560											0.32				0.941
43	36	0.0470	0.56	0.05	0 =:			0.0260	0.0260	300	8.945	61.1	5.00	88.90	6.40	1.75	123.80	0.05	7.83	0.0010	22737.7	0.001	0.921
45	44	0.0000	0.50	0.251	0.71			0.1770	0.1770	225	19.500	37.0	5.00	88.90	43.80	1.86	73.90	0.59	4.37	0.0620	37.0	0.528	0.308
47	46	0.0320	0.56	0.171	0.71			0.1390	0.1560	300	7.000	150.0	5.15	88.03	38.40	1.12	79.00	0.49	4.90	0.0150	633.9	0.011	1.180
48	47	0.0320	0.56	0.102	0.71			0.0180	0.0180	300	8.800	183.3	5.00	88.90	4.30	1.01	71.40	0.06	9.70	0.0010	49616.3	0.001	1.179
50 51	49 50			0.192 0.074	0.71 0.71			0.1350 0.0520	0.2400 0.0520	300 225	4.000 14.000	92.8 45.6	5.15 5.00	88.00 88.90	58.60 12.90	1.42 1.67	100.40 66.50	0.58 0.19	3.26 7.00	0.0350 0.0050	92.8 83.3	0.043 0.168	0.650 0.562
52	50			0.074	0.71			0.0520	0.0520	225	9.000	127.5	5.00	88.90	12.90	1.00	39.80	0.19	7.00	0.0050	1220.6	0.108	0.545
54	53	0.0350	0.56	0.185	0.71			0.0520	0.2420	300	5.998	185.0	5.15	88.03	59.20	1.00	71.10	0.32	1.77	0.0360	267.1	0.007	0.590
55	54	0.0340	0.56	0.103	5.71			0.0190	0.0190	300	8.800	183.3	5.00	88.90	4.70	1.01	71.40	0.07	3.52	0.0010	350.1	0.022	0.595
56	54	3.33 10	0.00	0.102	0.71			0.0720	0.0720	225	18.600	13.7	5.00	88.90	17.80	3.05	121.50	0.15	7.00	0.0100	32.9	0.565	0.681
50	J			J. 102	U., I			5.5720	0.0720		_0.000	20.7	5.50	55.50	_/.00	5.05		3.13	,,,,,	2.0100	52.5	3.303	3.301

_165\D	Α	23.01.25	ΑТ	Master	Lon	ISSUED FOR COUNCIL SUBMISSION
16-01						
3\308						
a\FS0						
S\dat						
2d	DE\/	DATE	DDN	CKD	ADD	AMENDMENT

COPYRIGHT
The concepts and information contained in this document are the Copyright of Cossill & Webley Consulting Engineers. Use or copying of the document in whole or part without the written permission of Cossill & Webley Consulting Engineers constitutes an infringement of copyright.

This plan is not to be used for constructior unless issued as revision 0 or higher


Street Address
Level 20, 390 St Kilda Road W cossillwebley.com.au
Melbourne VIC 3004 T (03) 8548 1560

E Melbourne.Reception@cosweb.com.au

SIG GRO	UP
VED PE 0005927	DESIGNED
11	W. SANSOM

KALA ESTATE - STAGE 01 5 YEAR ARI COMPUTATIONS MUNICIPALITY CARDINIA SHIRE COUNCIL 3086-01-440

REV DATE DRN CKD APP

KALA ESTATE Project: 3086-01 Project No.

Location	NAME	Loto		CATCHMENT AREAS									MAJOR FLOW (1% AEP)					
		Lots	Road	Reserve	Ext Devlp	Ext Undevlp	A _e	t _c	1	Q	0.8xQ Total	A _e ha	t _c	1	Q	Q diversion	Q Total m³/s	m³/s
		ha	ha	ha	ha	ha	ha	min	mm/hr	m³/s	m³/s			mm/hr	m³/s	m³/s		
I) MT ARARAT STH ROAD B1,	B2	0.000	1.362	0.000	0.000	9.191	2.477	16.7	50.928	0.350	0.280	3.127	16.7	98.840	0.858	0.000	0.858	0.508
2) KALAMATA BOULEVARD A1,0		1.530	0.510	0.000	0.743	0.000	2.476	10.1	66.109	0.170	0.136	2.386	10.1	127.342	0.844	0.000	0.844	0.674
B) KALAMATA BOULEVARD C,F		1.181	0.164	0.000	0.000	0.000	0.925	9.1	69.273	0.178	0.142	1.169	9.1	132.801	0.431	0.000	0.431	0.253
I) KALAMATA BOULEVARD C*		0.419	0.102	0.000	0.000	0.000	0.353	6.8	78.910	0.077	0.062	0.445	6.8	148.225	0.183	0.000	0.183	0.106
5) TART STREET A1,	A2, G,H,I,J	0.704	0.285	0.000	3.646	0.000	3.230	9.8	66.843	0.600	0.480	4.080	9.8	128.624	1.458	0.000	1.458	0.858
S) TART STREET A1,	G,H	0.595	0.321	0.000	1.486	0.000	1.648	8.9	69.975	0.320	0.256	2.082	8.9	133.986	0.775	0.000	0.775	0.455
7) TART STREET A1,	G	0.106	0.040	0.000	1.486	0.000	1.146	6.3	81.412	0.259	0.207	1.448	6.3	151.926	0.611	0.000	0.611	0.352
B) DELPHI ROAD L		0.156	0.103	0.000	0.000	0.000	0.168	6.7	79.316	0.037	0.030	0.212	6.7	148.835	0.087	0.000	0.087	0.051
O) OLIVE GROVE E		0.148	0.101	0.000	0.000	0.000	0.161	6.2	81.869	0.037	0.029	0.203	6.2	152.588	0.086	0.000	0.086	0.049
I0) BRANCH ROAD D,C	<u> </u>	0.210	0.109	0.000	0.000	0.000	0.209	6.4	80.653	0.047	0.037	0.264	6.4	150.817	0.111	0.000	0.111	0.064
I1) OLEA WAY A2,	J	0.000	0.040	0.000	2.903	0.000	2.072	7.1	77.241	0.445	0.356	2.618	7.1	145.688	1.059	0.000	1.059	0.615

Flow Length							
m							
See to below							
57.000							
140.000							
107.000							
55.000							
158.000							
See to below							
102.000							
72.000							
86.000							
See to below							

COEFFIECIENT OF RUNOFF

		Lots	Road Reserve	Reserve	Ext Devlp	Ext Undevlp
STORM EVENT	20% AEP	0.706	0.557	0.333	0.706	0.187
STORWIE VENT	1% AEP	0.892	0.703	0.420	0.892	0.236

	CATCHMENT AREAS						
NAME	Lots	Road	Reserve	-	Ext Undevlp	TOTAL	
	ha	ha	ha	ha	ha	ha	
EXT A1				1.486		1.486	
EXT A2				2.903		2.903	
EXT B1		1.108			7.345	8.453	
EXT B2		0.254			1.846	2.100	
С	0.419	0.102				0.521	
D	0.210	0.058				0.268	
E	0.148	0.101				0.249	
F	0.762	0.113				0.875	
G	0.106	0.040				0.146	
Н	0.489	0.281		\		0.770	
		0.040				0.040	
J	0.109	0.084				0.193	
K	0.243	0.146				0.389	
L	0.156	0.103				0.259	
R	0.000	0.039				0.039	

<u>.</u>	,				
<u>É</u> A	23.01.25	АТ	Macille.	Don	ISSUED FOR COUNCIL SUBMISSION
00061					
9					
REV	DATE	DRN	CKD	APP	AMENDMENT

COPYRIGHT

The concepts and information contained in this document are the Copyright of Cossill & Webley Consulting Engineers. Use or copying of the document in whole or part without the written permission of Cossill & Webley Consulting Engineers constitutes an infringement of copyright.

CONSULTING ENGINEERS Street Address
Level 20, 390 St Kilda Road W cossillwebley.com.au
Melbourne VIC 3004 T (03) 8548 1560
E Melbourne.Reception@cosweb.com.au

SIG GROUP								
VED PE 0005927	DESIGNED							
11	W. SANSOM							

KALA ESTATE - STAGE 01 100 YEAR ARI COMPUTATIONS MUNICIPALITY CARDINIA SHIRE COUNCIL

This plan is not to be used for construction unless issued as revision 0 or higher

T220227

3086-01-460